Do you want to publish a course? Click here

80-Gbit/s 100-m Free-Space Optical Data Transmission Link via a Flying UAV Using Multiplexing of Orbital-Angular-Momentum Beams

288   0   0.0 ( 0 )
 Added by Long Li
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the use of orbital-angular-momentum (OAM)-multiplexing to increase the capacity of free-space data transmission to moving platforms, with an added potential benefit of decreasing the probability of data intercept. Specifically, we experimentally demonstrate and characterize the performance of an OAM-multiplexed, free-space optical (FSO) communications link between a ground station and a moving unmanned-aerial-vehicle (UAV). We achieve a total capacity of 80 Gbit/s up to 100-m-roundtrip link by multiplexing 2 OAM beams, each carrying a 40-Gbit/s quadrature-phase-shift-keying (QPSK) signal. Moreover, we investigate for static, hovering, and moving conditions the effects of channel impairments, including: tracking errors, propeller-induced airflows, power loss, intermodal crosstalk, and system bit error rate (BER). We find the following: (a) when the UAV hovers in the air, the power on the desired mode fluctuates by 2.1 dB, while the crosstalk to the other mode is -19 dB below the power on the desired mode; and (b) when the UAV moves in the air, the power fluctuation on the desired mode increases to 4.3 dB and the crosstalk to the other mode increases to -10 dB. Furthermore, the channel crosstalk decreases with an increase in OAM mode spacing.



rate research

Read More

134 - Yongxiong Ren , Long Li , Zhe Wang 2016
To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we multiplex and transmit four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam, we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the higher-rate link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the lower rates, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.
We present design and experimental validation of the system for the generation of the Orbital Angular Momentum (OAM) states using 3D-printed low-loss metamaterial phase plates for application in the terahertz (THz) wireless communications. By azimuthally varying the hole pattern density within the phase plate, the local effective refractive index is varied, thus also changing the local propagation constant in the azimuthal direction. The OAM of any topological charge can be created by simply varying the thickness of the phase plate. The phase plate with topological charge (m=1) is 3D printed and the amplitude and the phase of the terahertz signal after passing the plate is characterized using the THz-time domain imaging system. Finally, we present the experimental setup and theoretical simulation on the multiplexing and de-multiplexing of several different OAM states for applications in wireless terahertz communication.
Heralded single-photon source (HSPS) with competitive single photon purity and indistinguishability has become an essential resource for photonic quantum information processing. Here, for the first time, we proposed a theoretical regime to enhance heralded single-photons generation by multiplexing the degree of the freedom of orbital angular momentum (OAM) of down-converted entangled photon pairs emitted from a nonlinear crystal. Experimentally, a proof-of-principle experiment has been performed through multiplexing three OAM modes. We achieve a 47$%$ enhancement in single photon rate. A second-order autocorrelation function $g^{(2)}(0)<0.5$ ensures our multiplexed heralded single photons with good single photon purity. We further indicate that an OAM-multiplexed HSPS with high quality can be constructed by generating higher dimensional entangled state and sorting them with high efficiency in OAM space. Our avenue may approach a good HSPS with the deterministic property.
Light beam with optical vortices can propagate in free space only with integer orbital angular momentum. Here, we invert this scientific consensus theoretically and experimentally by proposing light beams carrying natural non-integer orbital angular momentum. These peculiar light beams are actually special solutions of wave function, which possess optical vortices with the topological charge l+0.5, where l is an integer. Owing to the interaction of phase and polarization singularity, these vortex beams with fractional topological charge can maintain their amplitude and vortex phase even when they propagate to an infinite distance. This work demonstrates another state of optical vortices in free space, which will fundamentally inject new vigor into optics, and other relate scientific fields.
Free-space communication allows one to use spatial mode encoding, which is susceptible to the effects of diffraction and turbulence. Here, we discuss the optimum communication modes of a system while taking such effects into account. We construct a free-space communication system that encodes information onto the plane-wave (PW) modes of light. We study the performance of this system in the presence of atmospheric turbulence, and compare it with previous results for a system employing orbital-angular-momentum (OAM) encoding. We are able to show that the PW basis is the preferred basis set for communication through atmospheric turbulence for a large Fresnel number system. This study has important implications for high-dimensional quantum key distribution systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا