No Arabic abstract
This paper studies the optimal output-feedback control of a linear time-invariant system where a stochastic event-based scheduler triggers the communication between the sensor and the controller. The primary goal of the use of this type of scheduling strategy is to provide significant reductions in the usage of the sensor-to-controller communication and, in turn, improve energy expenditure in the network. In this paper, we aim to design an admissible control policy, which is a function of the observed output, to minimize a quadratic cost function while employing a stochastic event-triggered scheduler that preserves the Gaussian property of the plant state and the estimation error. For the infinite horizon case, we present analytical expressions that quantify the trade-off between the communication cost and control performance of such event-triggered control systems. This trade-off is confirmed quantitatively via numerical examples.
Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for todays cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.
This paper considers a remote state estimation problem with multiple sensors observing a dynamical process, where sensors transmit local state estimates over an independent and identically distributed (i.i.d.) packet dropping channel to a remote estimator. At every discrete time instant, the remote estimator decides whether each sensor should transmit or not, with each sensor transmission incurring a fixed energy cost. The channel is shared such that collisions will occur if more than one sensor transmits at a time. Performance is quantified via an optimization problem that minimizes a convex combination of the expected estimation error covariance at the remote estimator and expected energy usage across the sensors. For transmission schedules dependent only on the estimation error covariance at the remote estimator, this work establishes structural results on the optimal scheduling which show that 1) for unstable systems, if the error covariance is large then a sensor will always be scheduled to transmit, and 2) there is a threshold-type behaviour in switching from one sensor transmitting to another. Specializing to the single sensor case, these structural results demonstrate that a threshold policy (i.e. transmit if the error covariance exceeds a certain threshold and dont transmit otherwise) is optimal. We also consider the situation where sensors transmit measurements instead of state estimates, and establish structural results including the optimality of threshold policies for the single sensor, scalar case. These results provide a theoretical justification for the use of such threshold policies in variance based event triggered estimation. Numerical studies confirm the qualitative behaviour predicted by our structural results. An extension of the structural results to Markovian packet drops is also outlined.
Recently, there have been efforts towards understanding the sampling behaviour of event-triggered control (ETC), for obtaining metrics on its sampling performance and predicting its sampling patterns. Finite-state abstractions, capturing the sampling behaviour of ETC systems, have proven promising in this respect. So far, such abstractions have been constructed for non-stochastic systems. Here, inspired by this framework, we abstract the sampling behaviour of stochastic narrow-sense linear periodic ETC (PETC) systems via Interval Markov Chains (IMCs). Particularly, we define functions over sequences of state-measurements and interevent times that can be expressed as discounted cumulative sums of rewards, and compute bounds on their expected values by constructing appropriate IMCs and equipping them with suitable rewards. Finally, we argue that our results are extendable to more general forms of functions, thus providing a generic framework to define and study various ETC sampling indicators.
In the same way that subsequent pauses in spoken language are used to convey information, it is also possible to transmit information in communication networks not only by message content, but also with its timing. This paper presents an event-triggering strategy that utilizes timing information by transmitting in a state-dependent fashion. We consider the stabilization of a continuous-time, time-invariant, linear plant over a digital communication channel with bounded delay and subject to bounded plant disturbances and establish two main results. On the one hand, we design an encoding-decoding scheme that guarantees a sufficient information transmission rate for stabilization. On the other hand, we determine a lower bound on the information transmission rate necessary for stabilization by any control policy.
In the context of event-triggered control, the timing of the triggering events carries information about the state of the system that can be used for stabilization. At each triggering event, not only can information be transmitted by the message content (data payload) but also by its timing. We demonstrate this in the context of stabilization of a laboratory-scale inverted pendulum around its equilibrium point over a digital communication channel with bounded unknown delay. Our event-triggering control strategy encodes timing information by transmitting in a state-dependent fashion and can achieve stabilization using a data payload transmission rate lower than what the data-rate theorem prescribes for classical periodic control policies that do not exploit timing information. Through experimental results, we show that as the delay in the communication channel increases, a higher data payload transmission rate is required to fulfill the proposed event-triggering policy requirements. This confirms the theoretical intuition that a larger delay brings a larger uncertainty about the value of the state at the controller, as less timing information is carried in the communication. In addition, our results also provide a novel encoding-decoding scheme to achieve input-to-state practically stability (ISpS) for nonlinear continuous-time systems under appropriate assumptions.