Do you want to publish a course? Click here

Abstracting the Sampling Behaviour of Stochastic Linear Periodic Event-Triggered Control Systems

135   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, there have been efforts towards understanding the sampling behaviour of event-triggered control (ETC), for obtaining metrics on its sampling performance and predicting its sampling patterns. Finite-state abstractions, capturing the sampling behaviour of ETC systems, have proven promising in this respect. So far, such abstractions have been constructed for non-stochastic systems. Here, inspired by this framework, we abstract the sampling behaviour of stochastic narrow-sense linear periodic ETC (PETC) systems via Interval Markov Chains (IMCs). Particularly, we define functions over sequences of state-measurements and interevent times that can be expressed as discounted cumulative sums of rewards, and compute bounds on their expected values by constructing appropriate IMCs and equipping them with suitable rewards. Finally, we argue that our results are extendable to more general forms of functions, thus providing a generic framework to define and study various ETC sampling indicators.



rate research

Read More

This study considers the problem of periodic event-triggered (PET) cooperative output regulation for a class of linear multi-agent systems. The advantage of the PET output regulation is that the data transmission and triggered condition are only needed to be monitored at discrete sampling instants. It is assumed that only a small number of agents can have access to the system matrix and states of the leader. Meanwhile, the PET mechanism is considered not only in the communication between various agents, but also in the sensor-to-controller and controller-to-actuator transmission channels for each agent. The above problem set-up will bring some challenges to the controller design and stability analysis. Based on a novel PET distributed observer, a PET dynamic output feedback control method is developed for each follower. Compared with the existing works, our method can naturally exclude the Zeno behavior, and the inter-event time becomes multiples of the sampling period. Furthermore, for every follower, the minimum inter-event time can be determined textit{a prior}, and computed directly without the knowledge of the leader information. An example is given to verify and illustrate the effectiveness of the new design scheme.
This paper proposes decentralized resource-aware coordination schemes for solving network optimization problems defined by objective functions which combine locally evaluable costs with network-wide coupling components. These methods are well suited for a group of supervised agents trying to solve an optimization problem under mild coordination requirements. Each agent has information on its local cost and coordinates with the network supervisor for information about the coupling term of the cost. The proposed approach is feedback-based and asynchronous by design, guarantees anytime feasibility, and ensures the asymptotic convergence of the network state to the desired optimizer. Numerical simulations on a power system example illustrate our results.
A framework for the event-triggered control synthesis under signal temporal logic (STL) tasks is proposed. In our previous work, a continuous-time feedback control law was designed, using the prescribed performance control technique, to satisfy STL tasks. We replace this continuous-time feedback control law by an event-triggered controller. The event-triggering mechanism is based on a maximum triggering interval and on a norm bound on the difference between the value of the current state and the value of the state at the last triggering instance. Simulations of a multi-agent system quantitatively show the efficacy of using an event-triggered controller to reduce communication and computation efforts.
135 - Vahid Rezaei 2021
A graph theoretic framework recently has been proposed to stabilize interconnected multiagent systems in a distributed fashion, while systematically capturing the architectural aspect of cyber-physical systems with separate agent or physical layer and control or cyber layer. Based on that development, in addition to the modeling uncertainties over the agent layer, we consider a scenario where the control layer is subject to the denial of service attacks. We propose a step-by-step procedure to design a control layer that, in the presence of the aforementioned abnormalities, guarantees a level of robustness and resiliency for the final two-layer interconnected multiagent system. The incorporation of an event-triggered strategy further ensures an effective use of the limited energy and communication resources over the control layer. We theoretically prove the resilient, robust, and Zeno-free convergence of all state trajectories to the origin and, via a simulation study, discuss the feasibility of the proposed ideas.
We analyze the closed-loop control performance of a networked control system that consists of $N$ independent linear feedback control loops, sharing a communication network with $M$ channels ($M<N$). A centralized scheduler, employing a scheduling protocol that produces periodic communication sequences, dictates which feedback loops should utilize all these channels. Under the periodic scheduling protocol, we derive analytical expressions for quantifying the overall control performance of the networked control system in terms of a quadratic function. We also formulate the offline combinatorial optimization of communication sequences for a given collection of linear feedback control subsystems. Then, we apply Monte Carlo Tree Search to determine the period of these communication sequences that attain near-optimal control performance. Via numerical studies, we show the effectiveness of the proposed framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا