Do you want to publish a course? Click here

Planck-scale dual-curvature lensing and spacetime noncommutativity

119   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

It was recently realized that Planck-scale momentum-space curvature, which is expected in some approaches to the quantum-gravity problem, can produce dual-curvature lensing, a feature which mainly affects the direction of observation of particles emitted by very distant sources. Several gray areas remain in our understanding of dual-curvature lensing, including the possibility that it might be just a coordinate artifact and the possibility that it might be in some sense a by product of the better studied dual-curvature redshift. We stress that data reported by the IceCube neutrino telescope should motivate a more vigorous effort of investigation of dual-curvature lensing, and we observe that studies of the recently proposed $rho$-Minkowski noncommutative spacetime could be valuable from this perspective. Through a dedicated $rho$-Minkowski analysis, we show that dual-curvature lensing is not merely a coordinate artifact and that it can be present even in theories without dual-curvature redshift.



rate research

Read More

We obtain the geodesics for the simplest possible stealth defect which has a flat spacetime. We, then, discuss the lensing properties of such a defect, and the corresponding image formation. Similar lensing properties can be expected to hold for curved-spacetime stealth defects.
Momentum-space curvature, which is expected in some approaches to the quantum-gravity problem, can produce dual redshift, a feature which introduces energy dependence of the travel times of ultrarelativistic particles, and dual lensing, a feature which mainly affects the direction of observation of particles. In our recent arXiv:1605.00496 we explored the possibility that dual redshift might be relevant in the analysis of IceCube neutrinos, obtaining results which are preliminarily encouraging. Here we explore the possibility that also dual lensing might play a role in the analysis of IceCube neutrinos. In doing so we also investigate issues which are of broader interest, such as the possibility of estimating the contribution by background neutrinos and some noteworthy differences between candidate early neutrinos and candidate late neutrinos.
Ultraviolet completion of the standard model plus gravity at and beyond the Planck scale is a daunting problem to which no generally accepted solution exists. Principal obstacles include (a) lack of data at the Planck scale (b) nonrenormalizability of gravity and (c) unitarity problem. Here we make a simple observation that, if one treats all Planck scale operators of equal canonical dimension democratically, one can tame some of the undesirable features of these models. With a reasonable amount of fine tuning one can satisfy slow roll conditions required in viable inflationary models. That remains true even when the number of such operators becomes very large.
We explore the possibility that well known properties of the parity operator, such as its idempotency and unitarity, might break down at the Planck scale. Parity might then do more than just swap right and left polarized states and reverse the sign of spatial momentum ${bf k}$: it might generate superpositions of right and left handed states, as well as mix momenta of different magnitudes. We lay down the general formalism, but also consider the concrete case of the Planck scale kinematics governed by $kappa$-Poincare symmetries, where some of the general features highlighted appear explicitly. We explore some of the observational implications for cosmological fluctuations. Different power spectra for right handed and left handed tensor modes might actually be a manifestation of deformed parity symmetry at the Planck scale. Moreover, scale-invariance and parity symmetry appear deeply interconnected.
The trajectory deflection and gravitational-electromagnetic dual lensing (GEL) of charged signal in general charged static and spherically symmetric spacetimes are considered in this work. We showed that the perturbative approach previously developed for neutral particles can be extended to the electromagnetic interaction case. The deflection angle still takes a (quasi-)series form and the finite distance effect of both the source and observer can be taken into account. Comparing to pure gravitational case, the apparent angles of the images in the GEL, their magnifications and time delay all receive the electromagnetic corrections starting from the first non-trivial order. The sign and relative size of the leading corrections are determined by $sim frac{Q}{M}frac{q}{E}$ where $M,~Q,~q,~E$ are the spacetime mass and charge, and signal particle charge and energy respectively. It is found that for $qQ>0$ (or $<0$), the electromagnetic interaction will decrease (or increase) the deflection angle, and in GEL the impact parameters, apparent angles, magnifications and total travel time for each image. The time delay is increased for small $beta$ and $qQ>0$, and otherwise always increased regardless the sign of $qQ$. The results are then applied to the deflection and GEL of charged protons in cosmic rays in Reissner-Nordstrom, charged dilaton and charged Horndeski spacetimes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا