Do you want to publish a course? Click here

Parity at the Planck scale

107   0   0.0 ( 0 )
 Added by Giulia Gubitosi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the possibility that well known properties of the parity operator, such as its idempotency and unitarity, might break down at the Planck scale. Parity might then do more than just swap right and left polarized states and reverse the sign of spatial momentum ${bf k}$: it might generate superpositions of right and left handed states, as well as mix momenta of different magnitudes. We lay down the general formalism, but also consider the concrete case of the Planck scale kinematics governed by $kappa$-Poincare symmetries, where some of the general features highlighted appear explicitly. We explore some of the observational implications for cosmological fluctuations. Different power spectra for right handed and left handed tensor modes might actually be a manifestation of deformed parity symmetry at the Planck scale. Moreover, scale-invariance and parity symmetry appear deeply interconnected.



rate research

Read More

162 - Hideki Maeda 2021
We present a simple static spacetime which describes a spherically symmetric traversable wormhole characterized by a length parameter $l$ and reduces to Minkowski in the limit $lto 0$. The wormhole connects two distinct asymptotically flat regions with vanishing ADM mass and the areal radius of its throat is exactly $l$. All the standard energy conditions are respected outside the proper radial distance approximately $1.60l$ from the wormhole throat. If $l$ is identified as the Planck length $l_{rm p}$, the total amount of the negative energy supporting this wormhole is only $Esimeq -2.65m_{rm p}c^2$, which is the rest mass energy of about $-5.77times 10^{-5}{rm g}$.
264 - Saurya Das , Sujoy K. Modak 2021
The Planck or the quantum gravity scale, being $16$ orders of magnitude greater than the electroweak scale, is often considered inaccessible by current experimental techniques. However, it was shown recently by one of the current authors that quantum gravity effects via the Generalized Uncertainty Principle affects the time required for free wavepackets to double their size, and this difference in time is at or near current experimental accuracies [1, 2]. In this work, we make an important improvement over the earlier study, by taking into account the leading order relativistic correction, which naturally appears in the systems under consideration, due to the significant mean velocity of the travelling wavepackets. Our analysis shows that although the relativistic correction adds nontrivial modifications to the results of [1, 2], the earlier claims remain intact and are in fact strengthened. We explore the potential for these results being tested in the laboratory.
We study the implications of a change of coordinatization of momentum space for theories with curved momentum space. We of course find that after a passive diffeomorphism the theory yields the same physical predictions, as one would expect considering that a simple reparametrization should not change physics. However, it appears that general momentum-space covariance (invariance under active diffeomorphisms of momentum space) cannot be enforced, and within a given set of prescriptions on how the theory should encode momentum-space metric and affine connection the physical predictions do depend on the momentum space background. These conclusions find support in some general arguments and in our quantitative analysis of a much-studied toy model with maximally-symmetric (curved) momentum space.
The covariant understanding of dispersion relations as level sets of Hamilton functions on phase space enables us to derive the most general dispersion relation compatible with homogeneous and isotropic spacetimes. We use this concept to present a Planck-scale deformation of the Hamiltonian of a particle in Friedman-Lema^itre-Robertson-Walker (FLRW) geometry that is locally identical to the $kappa$-Poincare dispersion relation, in the same way as the dispersion relation of point particles in general relativity is locally identical to the one valid in special relativity. Studying the motion of particles subject to such Hamiltonian we derive the redshift and lateshift as observable consequences of the Planck-scale deformed FLRW universe.
122 - Mauricio Bellini 2020
I use Unified Spinor Fields (USF), to discuss the creation of magnetic monopoles during preinflation, as excitations of the quantum vacuum coming from a condensate of massive charged vector bosons. For a primordial universe with total energy $M_p$, and for magnetic monopoles created with a total Planck magnetic charge $q_M=q_P=pm e/sqrt{alpha}$ and a total mass $m_M$, it is obtained after quantisation of the action that the fine-structure constant is given by: $alpha= frac{5}{6} left(1- frac{16 ,m_M}{5 ,M_p}right) ,left(frac{e}{q_M}right)^2$. If these magnetic monopoles were with total magnetic charge $q_M=pm e$ and a small mass $m=m_M/n$, there would be a large number of small quantum magnetic monopoles which could be candidates to explain the presence of dark matter with a $30.97,%$ of the energy in the primordial universe at the Planck era. The case of milli-magnetically charged particles is also analysed. We demonstrate that magnetic monopoles (MM) with masses less than $3.6times 10^3$ GeV, can exist with a very small charges of up to $10^{-14},e$, which are quantities of interest for searches to be performed in the ATLAS and MoEDAL experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا