No Arabic abstract
A recent result characterizes the fully order reversing operators acting on the class of lower semicontinuous proper convex functions in a real Banach space as certain linear deformations of the Legendre-Fenchel transform. Motivated by the Hilbert space version of this result and by the well-known result saying that this convex conjugation transform has a unique fixed point (namely, the normalized energy function), we investigate the fixed point equation in which the involved operator is fully order reversing and acts on the above-mentioned class of functions. It turns out that this nonlinear equation is very sensitive to the involved parameters and can have no solution, a unique solution, or several (possibly infinitely many) ones. Our analysis yields a few by-products, such as results related to positive definite operators, and to functional equations and inclusions involving monotone operators.
We classify all functions which, when applied term by term, leave invariant the sequences of moments of positive measures on the real line. Rather unexpectedly, these functions are built of absolutely monotonic components, or reflections of them, with possible discontinuities at the endpoints. Even more surprising is the fact that functions preserving moments of three point masses must preserve moments of all measures. Our proofs exploit the semidefiniteness of the associated Hankel matrices and the complete monotonicity of the Laplace transforms of the underlying measures. As a byproduct, we characterize the entrywise transforms which preserve totally non-negative Hankel matrices, and those which preserve all totally non-negative matrices. The latter class is surprisingly rigid: such maps must be constant or linear. We also examine transforms in the multivariable setting, which reveals a new class of piecewise absolutely monotonic functions.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying that there exists a constant $p_0in(0,p_-)$, where $p_-:=mathop{mathrm {ess,inf}}_{xin mathbb R^n}p(x)$, such that the Hardy-Littlewood maximal operator is bounded on the variable exponent Lebesgue space $L^{p(cdot)/p_0}(mathbb R^n)$. In this article, via investigating relations between boundary valued of harmonic functions on the upper half space and elements of variable exponent Hardy spaces $H^{p(cdot)}(mathbb R^n)$ introduced by E. Nakai and Y. Sawano and, independently, by D. Cruz-Uribe and L.-A. D. Wang, the authors characterize $H^{p(cdot)}(mathbb R^n)$ via the first order Riesz transforms when $p_-in (frac{n-1}n,infty)$, and via compositions of all the first order Riesz transforms when $p_-in(0,frac{n-1}n)$.
A well-known result says that the Euclidean unit ball is the unique fixed point of the polarity operator. This result implies that if, in $mathbb{R}^n$, the unit ball of some norm is equal to the unit ball of the dual norm, then the norm must be Euclidean. Motivated by these results and by relatively recent results in convex analysis and convex geometry regarding various properties of order reversing operators, we consider, in a real Hilbert space setting, a more general fixed point equation in which the polarity operator is composed with a continuous invertible linear operator. We show that if the linear operator is positive definite, then the considered equation is uniquely solvable by an ellipsoid. Otherwise, the equation can have several (possibly infinitely many) solutions or no solution at all. Our analysis yields a few by-products of possible independent interest, among them results related to coercive bilinear forms (essentially a quantitative convex analytic converse to the celebrated Lax-Milgram theorem from partial differential equations) and a characterization of real Hilbertian spaces.
An important class of fractional differential and integral operators is given by the theory of fractional calculus with respect to functions, sometimes called $Psi$-fractional calculus. The operational calculus approach has proved useful for understanding and extending this topic of study. Motivated by fractional differential equations, we present an operational calculus approach for Laplace transforms with respect to functions and their relationship with fractional operators with respect to functions. This approach makes the generalised Laplace transforms much easier to analyse and to apply in practice. We prove several important properties of these generalised Laplace transforms, including an inversion formula, and apply it to solve some fractional differential equations, using the operational calculus approach for efficient solving.
In this paper we prove that the Hankel multipliers of Laplace transform type on $(0,1)^n$ are of weak type (1,1). Also we analyze Lp-boundedness properties for the imaginary powers of Bessel operator on $(0,1)^n$.