Do you want to publish a course? Click here

Hankel Multipliers of Laplace Transform Type

142   0   0.0 ( 0 )
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we prove that the Hankel multipliers of Laplace transform type on $(0,1)^n$ are of weak type (1,1). Also we analyze Lp-boundedness properties for the imaginary powers of Bessel operator on $(0,1)^n$.



rate research

Read More

Given two intervals $I, J subset mathbb{R}$, we ask whether it is possible to reconstruct a real-valued function $f in L^2(I)$ from knowing its Hilbert transform $Hf$ on $J$. When neither interval is fully contained in the other, this problem has a unique answer (the nullspace is trivial) but is severely ill-posed. We isolate the difficulty and show that by restricting $f$ to functions with controlled total variation, reconstruction becomes stable. In particular, for functions $f in H^1(I)$, we show that $$ |Hf|_{L^2(J)} geq c_1 exp{left(-c_2 frac{|f_x|_{L^2(I)}}{|f|_{L^2(I)}}right)} | f |_{L^2(I)} ,$$ for some constants $c_1, c_2 > 0$ depending only on $I, J$. This inequality is sharp, but we conjecture that $|f_x|_{L^2(I)}$ can be replaced by $|f_x|_{L^1(I)}$.
In limited data computerized tomography, the 2D or 3D problem can be reduced to a family of 1D problems using the differentiated backprojection (DBP) method. Each 1D problem consists of recovering a compactly supported function $f in L^2(mathcal F)$, where $mathcal F$ is a finite interval, from its partial Hilbert transform data. When the Hilbert transform is measured on a finite interval $mathcal G$ that only overlaps but does not cover $mathcal F$ this inversion problem is known to be severely ill-posed [1]. In this paper, we study the reconstruction of $f$ restricted to the overlap region $mathcal F cap mathcal G$. We show that with this restriction and by assuming prior knowledge on the $L^2$ norm or on the variation of $f$, better stability with Holder continuity (typical for mildly ill-posed problems) can be obtained.
Let $Dinmathbb{N}$, $qin[2,infty)$ and $(mathbb{R}^D,|cdot|,dx)$ be the Euclidean space equipped with the $D$-dimensional Lebesgue measure. In this article, via an auxiliary function space $mathrm{WE}^{1,,q}(mathbb R^D)$ defined via wavelet expansions, the authors establish the Riesz transform characterization of Triebel-Lizorkin spaces $dot{F}^0_{1,,q}(mathbb{R}^D)$. As a consequence, the authors obtain the Fefferman-Stein decomposition of Triebel-Lizorkin spaces $dot{F}^0_{infty,,q}(mathbb{R}^D)$. Finally, the authors give an explicit example to show that $dot{F}^0_{1,,q}(mathbb{R}^D)$ is strictly contained in $mathrm{WE}^{1,,q}(mathbb{R}^D)$ and, by duality, $mathrm{WE}^{infty,,q}(mathbb{R}^D)$ is strictly contained in $dot{F}^0_{infty,,q}(mathbb{R}^D)$. Although all results when $D=1$ were obtained by C.-C. Lin et al. [Michigan Math. J. 62 (2013), 691-703], as was pointed out by C.-C. Lin et al., the approach used in the case $D=1$ can not be applied to the case $Dge2$, which needs some new skills.
An important class of fractional differential and integral operators is given by the theory of fractional calculus with respect to functions, sometimes called $Psi$-fractional calculus. The operational calculus approach has proved useful for understanding and extending this topic of study. Motivated by fractional differential equations, we present an operational calculus approach for Laplace transforms with respect to functions and their relationship with fractional operators with respect to functions. This approach makes the generalised Laplace transforms much easier to analyse and to apply in practice. We prove several important properties of these generalised Laplace transforms, including an inversion formula, and apply it to solve some fractional differential equations, using the operational calculus approach for efficient solving.
We prove endpoint-type sparse bounds for Walsh-Fourier Marcinkiewicz multipliers and Littlewood-Paley square functions. These results are motivated by conjectures of Lerner in the Fourier setting. As a corollary, we obtain novel quantitative weighted norm inequalities for these operators. Among these, we establish the sharp growth rate of the $L^p$ weighted operator norm in terms of the $A_p$ characteristic in the full range $1<p<infty$ for Walsh-Littlewood-Paley square functions, and a restricted range for Marcinkiewicz multipliers. Zygmunds $L{(log L)^{{frac12}}}$ inequality is the core of our lacunary multi-frequency projection proof. We use the Walsh setting to avoid extra complications in the arguments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا