Do you want to publish a course? Click here

On Laplace transforms with respect to functions and their applications to fractional differential equations

195   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

An important class of fractional differential and integral operators is given by the theory of fractional calculus with respect to functions, sometimes called $Psi$-fractional calculus. The operational calculus approach has proved useful for understanding and extending this topic of study. Motivated by fractional differential equations, we present an operational calculus approach for Laplace transforms with respect to functions and their relationship with fractional operators with respect to functions. This approach makes the generalised Laplace transforms much easier to analyse and to apply in practice. We prove several important properties of these generalised Laplace transforms, including an inversion formula, and apply it to solve some fractional differential equations, using the operational calculus approach for efficient solving.



rate research

Read More

Many different types of fractional calculus have been defined, which may be categorised into broad classes according to their properties and behaviours. Two types that have been much studied in the literature are the Hadamard-type fractional calculus and tempered fractional calculus. This paper establishes a connection between these two definitions, writing one in terms of the other by making use of the theory of fractional calculus with respect to functions. By extending this connection in a natural way, a generalisation is developed which unifies several existing fractional operators: Riemann--Liouville, Caputo, classical Hadamard, Hadamard-type, tempered, and all of these taken with respect to functions. The fundamental calculus of these generalised operators is established, including semigroup and reciprocal properties as well as application to some example functions. Function spaces are constructed in which the new operators are defined and bounded. Finally, some formulae are derived for fractional integration by parts with these operators.
Many different types of fractional calculus have been proposed, which can be organised into some general classes of operators. For a unified mathematical theory, results should be proved in the most general possible setting. Two important classes of fractional-calculus operators are the fractional integrals and derivatives with respect to functions (dating back to the 1970s) and those with general analytic kernels (introduced in 2019). To cover both of these settings in a single study, we can consider fractional integrals and derivatives with analytic kernels with respect to functions, which have never been studied in detail before. Here we establish the basic properties of these general operators, including series formulae, composition relations, function spaces, and Laplace transforms. The tools of convergent series, from fractional calculus with analytic kernels, and of operational calculus, from fractional calculus with respect to functions, are essential ingredients in the analysis of the general class that covers both.
We present some distinct asymptotic properties of solutions to Caputo fractional differential equations (FDEs). First, we show that the non-trivial solutions to a FDE can not converge to the fixed points faster than $t^{-alpha}$, where $alpha$ is the order of the FDE. Then, we introduce the notion of Mittag-Leffler stability which is suitable for systems of fractional-order. Next, we use this notion to describe the asymptotical behavior of solutions to FDEs by two approaches: Lyapunovs first method and Lyapunovs second method. Finally, we give a discussion on the relation between Lipschitz condition, stability and speed of decay, separation of trajectories to scalar FDEs.
We derive properties of powers of a function satisfying a second-order linear differential equation. In particular we prove that the n-th power of the function satisfies an (n+1)-th order differential equation and give a simple method for obtaining the differential equation. Also we determine the exponents of the differential equation and derive a bound for the degree of the polynomials, which are coefficients in the differential equation. The bound corresponds to the order of differential equation satisfied by the n-fold convolution of the Fourier transform of the function. These results are applied to some probability density functions used in statistics.
128 - N.D. Cong , H.T. Tuan 2017
Under a mild Lipschitz condition we prove a theorem on the existence and uniqueness of global solutions to delay fractional differential equations. Then, we establish a result on the exponential boundedness for these solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا