Do you want to publish a course? Click here

Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints

41   0   0.0 ( 0 )
 Added by Kai-Wei Chang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Language is increasingly being used to define rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively.



rate research

Read More

Many text corpora exhibit socially problematic biases, which can be propagated or amplified in the models trained on such data. For example, doctor cooccurs more frequently with male pronouns than female pronouns. In this study we (i) propose a metric to measure gender bias; (ii) measure bias in a text corpus and the text generated from a recurrent neural network language model trained on the text corpus; (iii) propose a regularization loss term for the language model that minimizes the projection of encoder-trained embeddings onto an embedding subspace that encodes gender; (iv) finally, evaluate efficacy of our proposed method on reducing gender bias. We find this regularization method to be effective in reducing gender bias up to an optimal weight assigned to the loss term, beyond which the model becomes unstable as the perplexity increases. We replicate this study on three training corpora---Penn Treebank, WikiText-2, and CNN/Daily Mail---resulting in similar conclusions.
96 - Jiao Sun , Nanyun Peng 2021
Human activities can be seen as sequences of events, which are crucial to understanding societies. Disproportional event distribution for different demographic groups can manifest and amplify social stereotypes, and potentially jeopardize the ability of members in some groups to pursue certain goals. In this paper, we present the first event-centric study of gender biases in a Wikipedia corpus. To facilitate the study, we curate a corpus of career and personal life descriptions with demographic information consisting of 7,854 fragments from 10,412 celebrities. Then we detect events with a state-of-the-art event detection model, calibrate the results using strategically generated templates, and extract events that have asymmetric associations with genders. Our study discovers that the Wikipedia pages tend to intermingle personal life events with professional events for females but not for males, which calls for the awareness of the Wikipedia community to formalize guidelines and train the editors to mind the implicit biases that contributors carry. Our work also lays the foundation for future works on quantifying and discovering event biases at the corpus level.
Internet search affects peoples cognition of the world, so mitigating biases in search results and learning fair models is imperative for social good. We study a unique gender bias in image search in this work: the search images are often gender-imbalanced for gender-neutral natural language queries. We diagnose two typical image search models, the specialized model trained on in-domain datasets and the generalized representation model pre-trained on massive image and text data across the internet. Both models suffer from severe gender bias. Therefore, we introduce two novel debiasing approaches: an in-processing fair sampling method to address the gender imbalance issue for training models, and a post-processing feature clipping method base on mutual information to debias multimodal representations of pre-trained models. Extensive experiments on MS-COCO and Flickr30K benchmarks show that our methods significantly reduce the gender bias in image search models.
Cultural products are a source to acquire individual values and behaviours. Therefore, the differences in the content of the magazines aimed specifically at women or men are a means to create and reproduce gender stereotypes. In this study, we compare the content of a women-oriented magazine with that of a men-oriented one, both produced by the same editorial group, over a decade (2008-2018). With Topic Modelling techniques we identify the main themes discussed in the magazines and quantify how much the presence of these topics differs between magazines over time. Then, we performed a word-frequency analysis to validate this methodology and extend the analysis to other subjects that did not emerge automatically. Our results show that the frequency of appearance of the topics Family, Business and Women as sex objects, present an initial bias that tends to disappear over time. Conversely, in Fashion and Science topics, the initial differences between both magazines are maintained. Besides, we show that in 2012, the content associated with horoscope increased in the women-oriented magazine, generating a new gap that remained open over time. Also, we show a strong increase in the use of words associated with feminism since 2015 and specifically the word abortion in 2018. Overall, these computational tools allowed us to analyse more than 24,000 articles. Up to our knowledge, this is the first study to compare magazines in such a large dataset, a task that would have been prohibitive using manual content analysis methodologies.
Medical systems in general, and patient treatment decisions and outcomes in particular, are affected by bias based on gender and other demographic elements. As language models are increasingly applied to medicine, there is a growing interest in building algorithmic fairness into processes impacting patient care. Much of the work addressing this question has focused on biases encoded in language models -- statistical estimates of the relationships between concepts derived from distant reading of corpora. Building on this work, we investigate how word choices made by healthcare practitioners and language models interact with regards to bias. We identify and remove gendered language from two clinical-note datasets and describe a new debiasing procedure using BERT-based gender classifiers. We show minimal degradation in health condition classification tasks for low- to medium-levels of bias removal via data augmentation. Finally, we compare the bias semantically encoded in the language models with the bias empirically observed in health records. This work outlines an interpretable approach for using data augmentation to identify and reduce the potential for bias in natural language processing pipelines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا