We report variational and diffusion quantum Monte Carlo calculations of the binding energies of indirect trions and biexcitons in ideal two-dimensional bilayer systems within the effective-mass approximation, and with a Coulomb $1/r$ interaction between charge carriers. The critical layer separation at which trions become unbound has been studied for various electron-hole mass ratios, and found to be over an order of magnitude larger than the critical layer separation for biexcitons.
We designed and performed low temperature DC transport characterization studies on two-dimensional electron gases confined in lattice-matched In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As quantum wells grown by molecular beam epitaxy on InP substrates. The nearly constant mobility for samples with the setback distance larger than 50nm and the similarity between the quantum and transport life-time suggest that the main scattering mechanism is due to short range scattering, such as alloy scattering, with a scattering rate of 2.2 ps$^{-1}$. We also obtain the Fermi level at the In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As surface to be 0.36eV above the conduction band, when fitting our experimental densities with a Poisson-Schrodinger model.
We propose a three-pulse coherent ultrafast optical technique that is particularly sensitive to two-exciton correlations. Two Liouville-space pathways for the density matrix contribute to this signal which reveals double quantum coherences when displayed as a two-dimensional correlation plot. Two-exciton couplings spread the cross peaks along both axes, creating a characteristic highly resolved pattern. This level of detail is not available from conventional one-dimensional four-wave mixing or other two-dimensional correlation spectroscopy signals such as the photo echo, in which two-exciton couplings show up along a single axis and are highly congested.
We report measurements of the spin susceptibility in dilute two-dimensional electrons confined to a 45$AA$ wide AlAs quantum well. The electrons in this well occupy an out-of-plane conduction-band valley, rendering a system similar to two-dimensional electrons in Si-MOSFETs but with only one valley occupied. We observe an enhancement of the spin susceptibility over the band value that increases as the density is decreased, following closely the prediction of quantum Monte Carlo calculations and continuing at finite values through the metal-insulator transition.
The spectra of plasma and magnetoplasma excitations in a two-dimensional system of anisotropic heavy fermions were investigated for the first time. The spectrum of microwave absorption by disk-like samples of stressed AlAs quantum wells at low electron densities showed two plasma resonances separated by a frequency gap. These two plasma resonances correspond to electron mass principle values of $(1.10 pm 0.05) m_0$ and $(0.20 pm 0.01) m_0$. The observed results correspond to the case of a single valley strongly anisotropic Fermi surface. It was established that electron density increase results in population of the second valley, manifesting itself as a drastic modification of the plasma spectrum. We directly determined the electron densities in each valley and the inter-valley splitting energy from the ratio of the two plasma frequencies.
A two-dimensional (2D) electron gas formed in a modulation-doped GaAs/AlGaAs single quantum well undergoes a first-order transition when the first excited subband is occupied with electrons, as the Fermi level is tuned into resonance with the excited subband by applying a dc voltage. Direct evidence for this effect is obtained from low-temperature photoluminescence spectra which display the sudden renormalization of the intersubband energy $E_{01}$ upon the abrupt occupation of the first excited subband. Calculations within density-functional theory, which treat the 2D exchange potential {it exactly}, show that this thermodynamical instability of the electron system is mainly driven by {it intersubband} terms of the exchange Coulomb interaction. From temperature-dependent measurements the existence of a critical point at $T_c = 35pm 5$ K is inferred.