Do you want to publish a course? Click here

Exchange instability of the two-dimensional electron gas in semiconductor quantum wells

175   0   0.0 ( 0 )
 Added by Paco Guinea
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

A two-dimensional (2D) electron gas formed in a modulation-doped GaAs/AlGaAs single quantum well undergoes a first-order transition when the first excited subband is occupied with electrons, as the Fermi level is tuned into resonance with the excited subband by applying a dc voltage. Direct evidence for this effect is obtained from low-temperature photoluminescence spectra which display the sudden renormalization of the intersubband energy $E_{01}$ upon the abrupt occupation of the first excited subband. Calculations within density-functional theory, which treat the 2D exchange potential {it exactly}, show that this thermodynamical instability of the electron system is mainly driven by {it intersubband} terms of the exchange Coulomb interaction. From temperature-dependent measurements the existence of a critical point at $T_c = 35pm 5$ K is inferred.



rate research

Read More

87 - E. Diez , n S. Avesque 2006
We designed and performed low temperature DC transport characterization studies on two-dimensional electron gases confined in lattice-matched In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As quantum wells grown by molecular beam epitaxy on InP substrates. The nearly constant mobility for samples with the setback distance larger than 50nm and the similarity between the quantum and transport life-time suggest that the main scattering mechanism is due to short range scattering, such as alloy scattering, with a scattering rate of 2.2 ps$^{-1}$. We also obtain the Fermi level at the In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As surface to be 0.36eV above the conduction band, when fitting our experimental densities with a Poisson-Schrodinger model.
136 - Lijun Yang , Shaul Mukamel 2007
We propose a three-pulse coherent ultrafast optical technique that is particularly sensitive to two-exciton correlations. Two Liouville-space pathways for the density matrix contribute to this signal which reveals double quantum coherences when displayed as a two-dimensional correlation plot. Two-exciton couplings spread the cross peaks along both axes, creating a characteristic highly resolved pattern. This level of detail is not available from conventional one-dimensional four-wave mixing or other two-dimensional correlation spectroscopy signals such as the photo echo, in which two-exciton couplings show up along a single axis and are highly congested.
We demonstrate the existence of a novel breather mode in the self-consistent electron dynamics of a semiconductor quantum well. A non-perturbative variational method based on quantum hydrodynamics is used to determine the salient features of the electron breather mode. Numerical simulations of the time-dependent Wigner-Poisson or Hartree equations are shown to be in excellent agreement with our analytical results. For asymmetric quantum wells, a signature of the breather mode is observed in the dipole response, which can be detected by standard optical means.
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.
The low-temperature($4.2<T<12.5$ K) magnetotransport ($B<2$ T) of two-dimensional electrons occupying two subbands (with energy $E_1$ and $E_2$) is investigated in GaAs single quantum well with AlAs/GaAs superlattice barriers. Two series of Shubnikov-de Haas oscillations are found to be accompanied by magnetointersubband (MIS) oscillations, periodic in the inverse magnetic field. The period of the MIS oscillations obeys condition $Delta_{12}=(E_2-E_1)=k cdot hbar omega_c$, where $Delta_{12}$ is the subband energy separation, $omega_c$ is the cyclotron frequency, and $k$ is the positive integer. At $T$=4.2 K the oscillations manifest themselves up to $k$=100. Strong temperature suppression of the magnetointersubband oscillations is observed. We show that the suppression is a result of electron-electron scattering. Our results are in good agreement with recent experiments, indicating that the sensitivity to electron-electron interaction is the fundamental property of magnetoresistance oscillations, originating from the second-order Dingle factor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا