Do you want to publish a course? Click here

Learning audio sequence representations for acoustic event classification

136   0   0.0 ( 0 )
 Added by Zixing Zhang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Acoustic Event Classification (AEC) has become a significant task for machines to perceive the surrounding auditory scene. However, extracting effective representations that capture the underlying characteristics of the acoustic events is still challenging. Previous methods mainly focused on designing the audio features in a `hand-crafted manner. Interestingly, data-learnt features have been recently reported to show better performance. Up to now, these were only considered on the frame level. In this article, we propose an unsupervised learning framework to learn a vector representation of an audio sequence for AEC. This framework consists of a Recurrent Neural Network (RNN) encoder and an RNN decoder, which respectively transforms the variable-length audio sequence into a fixed-length vector and reconstructs the input sequence on the generated vector. After training the encoder-decoder, we feed the audio sequences to the encoder and then take the learnt vectors as the audio sequence representations. Compared with previous methods, the proposed method can not only deal with the problem of arbitrary-lengths of audio streams, but also learn the salient information of the sequence. Extensive evaluation on a large-size acoustic event database is performed, and the empirical results demonstrate that the learnt audio sequence representation yields a significant performance improvement by a large margin compared with other state-of-the-art hand-crafted sequence features for AEC.



rate research

Read More

The vector representations of fixed dimensionality for words (in text) offered by Word2Vec have been shown to be very useful in many application scenarios, in particular due to the semantic information they carry. This paper proposes a parallel version, the Audio Word2Vec. It offers the vector representations of fixed dimensionality for variable-length audio segments. These vector representations are shown to describe the sequential phonetic structures of the audio segments to a good degree, with very attractive real world applications such as query-by-example Spoken Term Detection (STD). In this STD application, the proposed approach significantly outperformed the conventional Dynamic Time Warping (DTW) based approaches at significantly lower computation requirements. We propose unsupervised learning of Audio Word2Vec from audio data without human annotation using Sequence-to-sequence Audoencoder (SA). SA consists of two RNNs equipped with Long Short-Term Memory (LSTM) units: the first RNN (encoder) maps the input audio sequence into a vector representation of fixed dimensionality, and the second RNN (decoder) maps the representation back to the input audio sequence. The two RNNs are jointly trained by minimizing the reconstruction error. Denoising Sequence-to-sequence Autoencoder (DSA) is furthered proposed offering more robust learning.
Audio event classification is an important task for several applications such as surveillance, audio, video and multimedia retrieval etc. There are approximately 3M people with hearing loss who cant perceive events happening around them. This paper establishes the CURE dataset which contains curated set of specific audio events most relevant for people with hearing loss. We propose a ladder network based audio event classifier that utilizes 5s sound recordings derived from the Freesound project. We adopted the state-of-the-art convolutional neural network (CNN) embeddings as audio features for this task. We also investigate extreme learning machine (ELM) for event classification. In this study, proposed classifiers are compared with support vector machine (SVM) baseline. We propose signal and feature normalization that aims to reduce the mismatch between different recordings scenarios. Firstly, CNN is trained on weakly labeled Audioset data. Next, the pre-trained model is adopted as feature extractor for proposed CURE corpus. We incorporate ESC-50 dataset as second evaluation set. Results and discussions validate the superiority of Ladder network over ELM and SVM classifier in terms of robustness and increased classification accuracy. While Ladder network is robust to data mismatches, simpler SVM and ELM classifiers are sensitive to such mismatches, where the proposed normalization techniques can play an important role. Experimental studies with ESC-50 and CURE corpora elucidate the differences in dataset complexity and robustness offered by proposed approaches.
Recent advances suggest the advantage of multi-modal training in comparison with single-modal methods. In contrast to this view, in our work we find that similar gain can be obtained from training with different formats of a single modality. In particular, we investigate the use of the contrastive learning framework to learn audio representations by maximizing the agreement between the raw audio and its spectral representation. We find a significant gain using this multi-format strategy against the single-format counterparts. Moreover, on the downstream AudioSet and ESC-50 classification task, our audio-only approach achieves new state-of-the-art results with a mean average precision of 0.376 and an accuracy of 90.5%, respectively.
Recent acoustic event classification research has focused on training suitable filters to represent acoustic events. However, due to limited availability of target event databases and linearity of conventional filters, there is still room for improving performance. By exploiting the non-linear modeling of deep neural networks (DNNs) and their ability to learn beyond pre-trained environments, this letter proposes a DNN-based feature extraction scheme for the classification of acoustic events. The effectiveness and robustness to noise of the proposed method are demonstrated using a database of indoor surveillance environments.
Self-supervised representation learning can mitigate the limitations in recognition tasks with few manually labeled data but abundant unlabeled data---a common scenario in sound event research. In this work, we explore unsupervised contrastive learning as a way to learn sound event representations. To this end, we propose to use the pretext task of contrasting differently augmented views of sound events. The views are computed primarily via mixing of training examples with unrelated backgrounds, followed by other data augmentations. We analyze the main components of our method via ablation experiments. We evaluate the learned representations using linear evaluation, and in two in-domain downstream sound event classification tasks, namely, using limited manually labeled data, and using noisy labeled data. Our results suggest that unsupervised contrastive pre-training can mitigate the impact of data scarcity and increase robustness against noisy labels, outperforming supervised baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا