Do you want to publish a course? Click here

High Quality Queueing Information from Accelerated Active Network Tomography

50   0   0.0 ( 0 )
 Added by Gabor Vattay
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Monitoring network state can be crucial in Future Internet infrastructures. Passive monitoring of all the routers is expensive and prohibitive. Storing, accessing and sharing the data is a technological challenge among networks with conflicting economic interests. Active monitoring methods can be attractive alternatives as they are free from most of these issues. Here we demonstrate that it is possible to improve the active network tomography methodology to such extent that the quality of the extracted link or router level delay is comparable to the passively measurable information. We show that the temporal precision of the measurements and the performance of the data analysis should be simultaneously improved to achieve this goal. In this paper we not only introduce a new efficient message-passing based algorithm but we also show that it is applicable for data collected by the ETOMIC high precision active measurement infrastructure. The measurements are conducted in the GEANT2 high speed academic network connecting the sites, which is an ideal test ground for such Future Internet applications.

rate research

Read More

In the todays Internet and TCP/IP-networks, the queueing of packets is commonly implemented using the protocol FIFO (First In First Out). Unfortunately, FIFO performs poorly in the Adversarial Queueing Theory. Other queueing strategies are researched in this model and better results are performed by alternative queueing strategies, e.g. LIS (Longest In System). This article introduces a new queueing protocol called interval-strategy that is concerned with the reduction from dynamic to static routing. We discuss the maximum system time for a packet and estimate with up-to-date results how this can be achieved. We figure out the maximum amount of time where a packet can spend in the network (i.e. worst case system time), and argue that the universal instability of the presented interval-strategy can be reached through these results. When a large group of queueing strategies is used for queueing, we prove that the interval-strategy will be universally unstable. Finally, we calculate the maximum time of the static routing to reach an universal stable and polynomial - in detail linear - bounded interval-strategy. Afterwards we close - in order to check this upper bound - with up-to-date results about the delivery times in static routing.
Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP scanner and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in-vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction methods that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of PAT scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.
Mobile quality of experience and user satisfaction are growing research topics. However, the relationship between a users satisfaction with network quality and the networks real performance in the field remains unexplored. This paper is the first to study both network and non-network predictors of user satisfaction in the wild. We report findings from a large sample (2224 users over 12 months) combining both questionnaires and network measurements. We found that minimum download goodput and device type predict satisfaction with network availability. Whereas for network speed, only download factors predicted satisfaction. We observe that users integrate over many measurements and exhibit a known peak-end effect in their ratings. These results can inform modeling efforts in quality of experience and user satisfaction.
We consider the problem of minimizing age in a multihop wireless network. There are multiple source-destination pairs, transmitting data through multiple wireless channels, over multiple hops. We propose a network control policy which consists of a distributed scheduling algorithm, utilizing channel state information and queue lengths at each link, in combination with a packet dropping rule. Dropping of older packets locally at queues is seen to reduce the average age of flows, even below what can be achieved by Last Come First Served (LCFS) scheduling. Dropping of older packets also allows us to use the network without congestion, irrespective of the rate at which updates are generated. Furthermore, exploiting system state information substantially improves performance. The proposed scheduling policy obtains average age values close to a theoretical lower bound as well.
Scheduling and managing queues with bounded buffers are among the most fundamental problems in computer networking. Traditionally, it is often assumed that all the properties of each packet are known immediately upon arrival. However, as traffic becomes increasingly heterogeneous and complex, such assumptions are in many cases invalid. In particular, in various scenarios information about packet characteristics becomes available only after the packet has undergone some initial processing. In this work, we study the problem of managing queues with limited knowledge. We start by showing lower bounds on the competitive ratio of any algorithm in such settings. Next, we use the insight obtained from these bounds to identify several algorithmic concepts appropriate for the problem, and use these guidelines to design a concrete algorithmic framework. We analyze the performance of our proposed algorithm, and further show how it can be implemented in various settings, which differ by the type and nature of the unknown information. We further validate our results and algorithmic approach by a simulation study that provides further insights as to our algorithmic design principles in face of limited knowledge.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا