No Arabic abstract
We consider the problem of minimizing age in a multihop wireless network. There are multiple source-destination pairs, transmitting data through multiple wireless channels, over multiple hops. We propose a network control policy which consists of a distributed scheduling algorithm, utilizing channel state information and queue lengths at each link, in combination with a packet dropping rule. Dropping of older packets locally at queues is seen to reduce the average age of flows, even below what can be achieved by Last Come First Served (LCFS) scheduling. Dropping of older packets also allows us to use the network without congestion, irrespective of the rate at which updates are generated. Furthermore, exploiting system state information substantially improves performance. The proposed scheduling policy obtains average age values close to a theoretical lower bound as well.
We consider the scenario where a sender periodically sends a batch of data to a receiver over a multi-hop network, possibly using multiple paths. Our objective is to minimize peak/average Age-of-Information (AoI) subject to throughput requirements. The consideration of batch generation and multi-path communication differentiates our AoI study from existing ones. We first show that our AoI minimization problems are NP-hard, but only in the weak sense, as we develop an optimal algorithm with a pseudo-polynomial time complexity. We then prove that minimizing AoI and minimizing maximum delay are roughly equivalent, in the sense that any optimal solution of the latter is an approximate solution of the former with bounded optimality loss. We leverage this understanding to design a general approximation framework for our problems. It can build upon any $alpha$-approximation algorithm of the maximum delay minimization problem, to construct an $(alpha+c)$-approximate solution for minimizing AoI. Here $c$ is a constant depending on the throughput requirements. Simulations over various network topologies validate the effectiveness of our approach.
We consider the age of information in a multihop multicast network where there is a single source node sending time-sensitive updates to $n^L$ end nodes, and $L$ denotes the number of hops. In the first hop, the source node sends updates to $n$ first-hop receiver nodes, and in the second hop each first-hop receiver node relays the update packets that it has received to $n$ further users that are connected to it. This network architecture continues in further hops such that each receiver node in hop $ell$ is connected to $n$ further receiver nodes in hop $ell+1$. We study the age of information experienced by the end nodes, and in particular, its scaling as a function of $n$. We show that, using an earliest $k$ transmission scheme in each hop, the age of information at the end nodes can be made a constant independent of $n$. In particular, the source node transmits each update packet to the earliest $k_1$ of the $n$ first-hop nodes, and each first-hop node that receives the update relays it to the earliest $k_2$ out of $n$ second-hop nodes that are connected to it and so on. We determine the optimum $k_ell$ stopping value for each hop $ell$ for arbitrary shifted exponential link delays.
We consider a multihop wireless system. There are multiple source-destination pairs. The data from a source may have to pass through multiple nodes. We obtain a channel scheduling policy which can guarantee end-to-end mean delay for the different traffic streams. We show the stability of the network for this policy by convergence to a fluid limit. It is intractable to obtain the stationary distribution of this network. Thus we also provide a diffusion approximation for this scheme under heavy traffic. We show that the stationary distribution of the scaled process of the network converges to that of the Brownian limit. This theoretically justifies the performance of the system. We provide simulations to verify our claims.
In wireless industrial networks, the information of time-sensitive control systems needs to be transmitted in an ultra-reliable and low-latency manner. This letter studies the resource allocation problem in finite blocklength transmission, in which the information freshness is measured as the age of information (AoI) whose maximal AoI is characterized using extreme value theory (EVT). The considered system design is to minimize the sensors transmit power and transmission blocklength subject to constraints on the maximal AoIs tail behavior. The studied problem is solved using Lyapunov stochastic optimization, and a dynamic reliability and age-aware policy for resource allocation and status updates is proposed. Simulation results validate the effectiveness of using EVT to characterize the maximal AoI. It is shown that sensors need to send larger-size data with longer transmission blocklength at lower transmit power. Moreover, the maximal AoIs tail decays faster at the expense of higher average information age.
Control of wireless multihop networks, while simultaneously meeting end-to-end mean delay requirements of different flows is a challenging problem. Additionally, distributed computation of control parameters adds to the complexity. Using the notion of discrete review used in fluid control of networks, a distributed algorithm is proposed for control of multihop wireless networks with interference constraints. The algorithm meets end-to-end mean delay requirements by solving an optimization problem at review instants. The optimization incorporates delay requirements as weights in the function being maximized. The weights are dynamic and vary depending on queue length information. The optimization is done in a distributed manner using an incremental gradient ascent algorithm. The stability of the network under the proposed policy is analytically studied and the policy is shown to be throughput optimal.