Do you want to publish a course? Click here

Queueing in the Mist: Buffering and Scheduling with Limited Knowledge

49   0   0.0 ( 0 )
 Added by Itamar Cohen
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Scheduling and managing queues with bounded buffers are among the most fundamental problems in computer networking. Traditionally, it is often assumed that all the properties of each packet are known immediately upon arrival. However, as traffic becomes increasingly heterogeneous and complex, such assumptions are in many cases invalid. In particular, in various scenarios information about packet characteristics becomes available only after the packet has undergone some initial processing. In this work, we study the problem of managing queues with limited knowledge. We start by showing lower bounds on the competitive ratio of any algorithm in such settings. Next, we use the insight obtained from these bounds to identify several algorithmic concepts appropriate for the problem, and use these guidelines to design a concrete algorithmic framework. We analyze the performance of our proposed algorithm, and further show how it can be implemented in various settings, which differ by the type and nature of the unknown information. We further validate our results and algorithmic approach by a simulation study that provides further insights as to our algorithmic design principles in face of limited knowledge.



rate research

Read More

In the todays Internet and TCP/IP-networks, the queueing of packets is commonly implemented using the protocol FIFO (First In First Out). Unfortunately, FIFO performs poorly in the Adversarial Queueing Theory. Other queueing strategies are researched in this model and better results are performed by alternative queueing strategies, e.g. LIS (Longest In System). This article introduces a new queueing protocol called interval-strategy that is concerned with the reduction from dynamic to static routing. We discuss the maximum system time for a packet and estimate with up-to-date results how this can be achieved. We figure out the maximum amount of time where a packet can spend in the network (i.e. worst case system time), and argue that the universal instability of the presented interval-strategy can be reached through these results. When a large group of queueing strategies is used for queueing, we prove that the interval-strategy will be universally unstable. Finally, we calculate the maximum time of the static routing to reach an universal stable and polynomial - in detail linear - bounded interval-strategy. Afterwards we close - in order to check this upper bound - with up-to-date results about the delivery times in static routing.
We propose a new class of algorithms for randomly scheduling network transmissions. The idea is to use (discrete) determinantal point processes (subsets) to randomly assign medium access to various {em repulsive} subsets of potential transmitters. This approach can be seen as a natural extension of (spatial) Aloha, which schedules transmissions independently. Under a general path loss model and Rayleigh fading, we show that, similarly to Aloha, they are also subject to elegant analysis of the coverage probabilities and transmission attempts (also known as local delay). This is mainly due to the explicit, determinantal form of the conditional (Palm) distribution and closed-form expressions for the Laplace functional of determinantal processes. Interestingly, the derived performance characteristics of the network are amenable to various optimizations of the scheduling parameters, which are determinantal kernels, allowing the use of techniques developed for statistical learning with determinantal processes. Well-established sampling algorithms for determinantal processes can be used to cope with implementation issues, which is is beyond the scope of this paper, but it creates paths for further research.
A common situation occurring when dealing with multimedia traffic is having large data frames fragmented into smaller IP packets, and having these packets sent independently through the network. For real-time multimedia traffic, dropping even few packets of a frame may render the entire frame useless. Such traffic is usually modeled as having {em inter-packet dependencies}. We study the problem of scheduling traffic with such dependencies, where each packet has a deadline by which it should arrive at its destination. Such deadlines are common for real-time multimedia applications, and are derived from stringent delay constraints posed by the application. The figure of merit in such environments is maximizing the systems {em goodput}, namely, the number of frames successfully delivered. We study online algorithms for the problem of maximizing goodput of delay-bounded traffic with inter-packet dependencies, and use competitive analysis to evaluate their performance. We present competitive algorithms for the problem, as well as matching lower bounds that are tight up to a constant factor. We further present the results of a simulation study which further validates our algorithmic approach and shows that insights arising from our analysis are indeed manifested in practice.
Throughput and per-packet delay can present strong trade-offs that are important in the cases of delay sensitive applications.We investigate such trade-offs using a random linear network coding scheme for one or more receivers in single hop wireless packet erasure broadcast channels. We capture the delay sensitivities across different types of network applications using a class of delay metrics based on the norms of packet arrival times. With these delay metrics, we establish a unified framework to characterize the rate and delay requirements of applications and optimize system parameters. In the single receiver case, we demonstrate the trade-off between average packet delay, which we view as the inverse of throughput, and maximum ordered inter-arrival delay for various system parameters. For a single broadcast channel with multiple receivers having different delay constraints and feedback delays, we jointly optimize the coding parameters and time-division scheduling parameters at the transmitters. We formulate the optimization problem as a Generalized Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the coding and scheduling parameters for efficient allocation of network resources under varying delay constraints. In the case where the receivers are served by multiple non-interfering wireless broadcast channels, the same optimization problem is formulated as a Signomial Program, which is NP-hard in general. We provide approximation methods using successive formulation of geometric programs and show the convergence of approximations.
112 - Lin Wang , Fa Zhang , Kai Zheng 2014
The power consumption of enormous network devices in data centers has emerged as a big concern to data center operators. Despite many traffic-engineering-based solutions, very little attention has been paid on performance-guaranteed energy saving schemes. In this paper, we propose a novel energy-saving model for data center networks by scheduling and routing deadline-constrained flows where the transmission of every flow has to be accomplished before a rigorous deadline, being the most critical requirement in production data center networks. Based on speed scaling and power-down energy saving strategies for network devices, we aim to explore the most energy efficient way of scheduling and routing flows on the network, as well as determining the transmission speed for every flow. We consider two genera
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا