Do you want to publish a course? Click here

The correlation between radio power and Mach number for radio relics in galaxy clusters

66   0   0.0 ( 0 )
 Added by Paolo Marchegiani
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss a new technique to constrain models for the origin of radio relics in galaxy clusters using the correlation between the shock Mach number and the radio power of relics. This analysis is carried out using a sample of relics with information on both the Mach numbers derived from X-ray observation, $mathcal{M}_X$, and using spectral information from radio observations of the peak and the average values of the spectral index along the relic, $mathcal{M}_R$. We find that there is a lack of correlation between $mathcal{M}_X$ and $mathcal{M}_R$; this result is an indication that the spectral index of the relic is likely not due to the acceleration of particles operated by the shock but it is related to the properties of a fossil electrons population. We also find that the available data on the correlation between the radio power $P_{1.4}$ and Mach numbers ($mathcal{M}_R$ and $mathcal{M}_X$) in relics indicate that neither the DSA nor the adiabatic compression can simply reproduce the observed $P_{1.4}-mathcal{M}$ correlations. Furthermore, we find that the radio power is not correlated with $mathcal{M}_X$, whereas it is not possible to exclude a correlation with $mathcal{M}_R$. This also indicates that the relic power is mainly determined by the properties of a fossil electron population rather than by the properties of the shock. Our results require either to consider models of shock (re)acceleration that go beyond the proposed scenarios of DSA and adiabatic compression at shocks, or to reconsider the origin of radio relics in terms of other physical scenarios.

rate research

Read More

139 - Z.S. Yuan 2015
Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate their radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio powers of relics, halos, and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, with the correlations concerning giant radio halos being, in general, the strongest ones. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in the intracluster medium responsible for re-accelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics is correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane.
246 - John A. ZuHone 2020
Radio relics in galaxy clusters are extended synchrotron sources produced by cosmic-ray electrons in the $mu$G magnetic field. Many relics are found in the cluster periphery and have a cluster-centric, narrow arc-like shape, which suggests that the electrons are accelerated or re-accelerated by merger shock fronts propagating outward in the intracluster plasma. In the X-ray, some relics do exhibit such shocks at the location of the relic, but many do not. We explore the possibility that radio relics trace not the shock fronts but the shape of the underlying distribution of seed relativistic electrons, lit up by a recent shock passage. We use magnetohydrodynamic simulations of cluster mergers and include bubbles of relativistic electrons injected by jets from the central AGN or from an off-center radio galaxy. We show that the merger-driven gas motions (a) can advect the bubble cosmic rays to very large radii, and (b) spread the relativistic seed electrons preferentially in tangential direction -- along the gravitational equipotential surfaces -- producing extended, filamentary or sheet-like regions of intracluster plasma enriched with aged cosmic rays, which resemble radio relics. Once a shock front passes across such a region, the sharp radio emission edges would trace the sharp boundaries of these enriched regions rather than the front. We also show that these elongated cosmic ray features are naturally associated with magnetic fields stretched tangentially along their long axis, which could help explain the high polarization of relics.
75 - A. Botteon , G. Brunetti , D. Ryu 2019
Radio relics in galaxy clusters are giant diffuse synchrotron sources powered in cluster outskirts by merger shocks. Although the relic-shock connection has been consolidated in recent years by a number of observations, the details of the mechanisms leading to the formation of relativistic particles in this environment are still not well understood. The diffusive shock acceleration (DSA) theory is a commonly adopted scenario to explain the origin of cosmic rays at astrophysical shocks, including those in radio relics in galaxy clusters. However, in a few specific cases it has been shown that the energy dissipated by cluster shocks is not enough to reproduce the luminosity of the relics via DSA of thermal particles. Studies based on samples of radio relics are required to further address this limitation of the mechanism. In this paper, we focus on ten well-studied radio relics with underlying shocks observed in the X-rays and calculate the electron acceleration efficiency of these shocks that is necessary to reproduce the observed radio luminosity of the relics. We find that in general the standard DSA cannot explain the origin of the relics if electrons are accelerated from the thermal pool with an efficiency significantly smaller than 10%. Our results show that other mechanisms, such as shock re-acceleration of supra-thermal seed electrons or a modification of standard DSA, are required to explain the formation of radio relics.
Moderately strong shocks arise naturally when two subclusters merge. For instance, when a smaller subcluster falls into the gravitational potential of a more massive cluster, a bow shock is formed and moves together with the subcluster. After pericenter passage, however, the subcluster is decelerated by the gravity of the main cluster, while the shock continues moving away from the cluster center. These shocks are considered as promising candidates for powering radio relics found in many clusters. The aim of this paper is to explore the fate of such shocks when they travel to the cluster outskirts, far from the place where the shocks were initiated. In a uniform medium, such a runaway shock should weaken with distance. However, as shocks move to large radii in galaxy clusters, the shock is moving down a steep density gradient that helps the shock to maintain its strength over a large distance. Observations and numerical simulations show that, beyond $R_{500}$, gas density profiles are as steep as, or steeper than, $sim r^{-3}$, suggesting that there exists a Habitable zone for moderately strong shocks in cluster outskirts where the shock strength can be maintained or even amplified. A characteristic feature of runaway shocks is that the strong compression, relative to the initial state, is confined to a narrow region just behind the shock. Therefore, if such a shock runs over a region with a pre-existing population of relativistic particles, then the boost in radio emissivity, due to pure adiabatic compression, will also be confined to a narrow radial shell.
In a growing number of galaxy clusters diffuse extended radio sources have been found. These sources are not directly associated with individual cluster galaxies. The radio emission reveal the presence of cosmic rays and magnetic fields in the intracluster medium (ICM). We classify diffuse cluster radio sources into radio halos, cluster radio shocks (relics), and revived AGN fossil plasma sources. Radio halo sources can be further divided into giant halos, mini-halos, and possible `intermediate sources. Halos are generally positioned at cluster center and their brightness approximately follows the distribution of the thermal ICM. Cluster radio shocks (relics) are polarized sources mostly found in the clusters periphery. They trace merger induced shock waves. Revived fossil plasma sources are characterized by their radio steep-spectra and often irregular morphologies. In this review we give an overview of the properties of diffuse cluster radio sources, with an emphasis on recent observational results. We discuss the resulting implications for the underlying physical acceleration processes that operate in the ICM, the role of relativistic fossil plasma, and the properties of ICM shocks and magnetic fields. We also compile an updated list of diffuse cluster radio sources which will be available on-line http://galaxyclusters.com. We end this review with a discussion on the detection of diffuse radio emission from the cosmic web.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا