Do you want to publish a course? Click here

The scaling relations and the fundamental plane for radio halos and relics of galaxy clusters

140   0   0.0 ( 0 )
 Added by JinLin Han
 Publication date 2015
  fields Physics
and research's language is English
 Authors Z.S. Yuan




Ask ChatGPT about the research

Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate their radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio powers of relics, halos, and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, with the correlations concerning giant radio halos being, in general, the strongest ones. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in the intracluster medium responsible for re-accelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics is correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane.



rate research

Read More

195 - Fabio Zandanel 2013
The underlying physics of giant and mini radio halos in galaxy clusters is still an open question. We find that mini halos (such as in Perseus and Ophiuchus) can be explained by radio-emitting electrons that are generated in hadronic cosmic ray (CR) interactions with protons of the intracluster medium. By contrast, the hadronic model either fails to explain the extended emission of giant radio halos (as in Coma at low frequencies) or would require a flat CR profile, which can be realized through outward streaming and diffusion of CRs (in Coma and A2163 at 1.4 GHz). We suggest that a second, leptonic component could be responsible for the missing flux in the outer parts of giant halos within a new hybrid scenario and we describe its possible observational consequences. To study the hadronic emission component of the radio halo population statistically, we use a cosmological mock galaxy cluster catalog built from the MultiDark simulation. Because of the properties of CR streaming and the different scalings of the X-ray luminosity (L_X) and the Sunyaev-Zeldovich flux (Y) with gas density, our model can simultaneously reproduce the observed bimodality of radio-loud and radio-quiet clusters at the same L_X as well as the unimodal distribution of radio-halo luminosity versus Y; thereby suggesting a physical solution to this apparent contradiction. We predict radio halo emission down to the mass scale of galaxy groups, which highlights the unique prospects for low-frequency radio surveys (such as the LOFAR Tier 1 survey) to increase the number of detected radio halos by at least an order of magnitude.
Diffuse radio emission from galaxy clusters in the form of radio halos and relics are tracers of the shocks and turbulence in the intra-cluster medium. The imprints of the physical processes that govern their origin and evolution can be found in their radio morphologies and spectra. The role of mildly relativistic population of electrons may be crucial for the acceleration mechanisms to work efficiently. Low frequency observations with telescopes that allow imaging of extended sources over a broad range of low frequencies ($< 2$ GHz) offer the best tools to study these sources. I will review the Giant Metrewave Radio Telescope (GMRT) observations in the past few years that have led to: i) statistical studies of large samples of galaxy clusters, ii) opening of the discovery space in low mass clusters and iii) tracing the spectra of seed relativistic electrons using the Upgraded GMRT.
479 - J. Donnert , K. Dolag , R.Cassano 2010
We use results from a constrained, cosmological MHD simulation of the Local Universe to predict radio halos and their evolution for a volume limited set of galaxy clusters and compare to current observations. The simulated magnetic field inside the clusters is a result of turbulent amplification within them, with the magnetic seed originating from star-burst driven, galactic outflows. We evaluate three models, where we choose different normalizations for the Cosmic Ray proton population within clusters. Similar to our previous analysis of the Coma cluster (Donnert et al. 2010), the radial profile and the morphological properties of observed radio halos can not be reproduced, even with a radially increasing energy fraction within the cosmic ray proton population. Scaling relations between X-ray luminosity and radio power can be reproduced by all models, however all models fail in the prediction of clusters with no radio emission. Also the evolutionary tracks of our largest clusters in all models fail to reproduce the observed bi-modality in radio luminosity. This provides additional evidence that the framework of hadronic, secondary models is disfavored to reproduce the large scale diffuse radio emission of galaxy clusters. We also provide predictions for the unavoidable emission of $gamma$-rays from the hadronic models for the full cluster set. None of such secondary models is yet excluded by the observed limits in $gamma$-ray emission, emphasizing that large scale diffuse radio emission is a powerful tool to constrain the amount of cosmic ray protons in galaxy clusters.
134 - S. Giodini 2013
Well-calibrated scaling relations between the observable properties and the total masses of clusters of galaxies are important for understanding the physical processes that give rise to these relations. They are also a critical ingredient for studies that aim to constrain cosmological parameters using galaxy clusters. For this reason much effort has been spent during the last decade to better understand and interpret relations of the properties of the intra-cluster medium. Improved X-ray data have expanded the mass range down to galaxy groups, whereas SZ surveys have openened a new observational window on the intracluster medium. In addition,continued progress in the performance of cosmological simulations has allowed a better understanding of the physical processes and selection effects affecting the observed scaling relations. Here we review the recent literature on various scaling relations, focussing on the latest observational measurements and the progress in our understanding of the deviations from self similarity.
Galaxy clusters undergo mergers that can generate extended radio sources called radio relics. Radio relics are the consequence of merger-induced shocks that propagate in the intra cluster medium (ICM). In this paper we analyse the radio, optical and X-ray data from a candidate galaxy cluster that has been selected from the radio emission coming from a candidate radio relic detected in NRAO VLA Sky Survey (NVSS). Our aim is to clarify the nature of this source and prove that under certain conditions radio emission from radio relics can be used to trace relatively low-mass galaxy clusters. We have observed the candidate galaxy cluster with the Giant Meterwave Radio Telescope (GMRT) at three different frequencies. These datasets have been analysed together with archival data from ROSAT in the X-ray and with archival data from the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) telescope in four different optical bands. We confirm the presence of a 1 Mpc long radio relic located in the outskirts of a previously unknown galaxy cluster. We confirm the presence of the galaxy cluster through dedicated optical observations and using archival X-ray data. Due to its proximity and similar redshift to a known Abell cluster, we named it: Abell 3527-bis. The galaxy cluster is among the least massive cluster known to host a radio relic. We showed that radio relics can be effectively used to trace a subset of relatively low-mass galaxy clusters that might have gone undetected in X-ray or Sunyaev-Zeldovich (SZ) surveys. This technique might be used in future deep, low-frequency surveys as those carried on by LOFAR, uGMRT and, ultimately, SKA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا