Do you want to publish a course? Click here

A simple photoionization scheme for characterizing electron and ion spectrometers

96   0   0.0 ( 0 )
 Added by Marcel Mudrich Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (<2 eV) structures. This scheme can easily be implemented into ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ~1$ mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.



rate research

Read More

In this Letter, we report a demonstration of ion and electron ghost imaging. Two beams of correlated ions and electrons are produced by a photoionization process and accelerated into opposite directions. Using a single time and position sensitive detector for one beam, we can image an object seen by the other beam even when the detector that sees this object has no spatial resolution. The extra information given by this second detector can, therefore, be used to reconstruct the image thanks to the correlation between the ions and the electrons. In our example, a metallic mask placed in front of a time-sensitive detector is used as the object to image. We demonstrated ion and electron ghost imaging using this mask in a transmission mode. These primary results are very promising and open applications especially in ion and electron imaging in surface science and nanophysics.
173 - D. Beck , K. Blaum , G. Bollen 2008
Significant systematic errors in high-precision Penning trap mass spectrometry can result from electric and magnetic field imperfections. An experimental procedure to minimize these uncertainties is presented for the on-line Penning trap mass spectrometer ISOLTRAP, located at ISOLDE/CERN. The deviations from the ideal magnetic and electric fields are probed by measuring the cyclotron frequency and the reduced cyclotron frequency, respectively, of stored ions as a function of the time between the ejection of ions from the preparation trap and their capture in the precision trap, which influences the energy of their axial motion. The correction parameters are adjusted to minimize the frequency shifts.
The Karlsruhe Tritium Neutrino (KATRIN) experiment investigating tritium beta-decay close to the endpoint with unprecedented precision has stringent requirements on the background level of less than 10^(-2) counts per second. Electron emission during the alpha-decay of Rn-219 and Rn-220 atoms in the electrostatic spectrometers of KATRIN is a serious source of background exceeding this limit. In this paper we compare extensive simulations of Rn-induced background to specific measurements with the KATRIN pre-spectrometer to fully characterize the observed Rn-background rates and signatures and determine generic Rn emanation rates from the pre-spectrometer bulk material and its vacuum components.
We present a Photon-Assisted Cascaded Electron Multipliers (PACEM) which has a potential for ion back-flow blocking in gaseous radiation detectors: the avalanche from a first multiplication stage propagates to the successive one via its photons, which in turn induce photoelectron emission from a photocathode deposited on the second multiplier stage; the multiplication process may further continue via electron-avalanche propagation. The photon-mediated stage allows, by a proper choice of geometry and fields, complete blocking of the ion back-flow into the first element; thus, only ions from the latter will flow back to the drift region. The PACEM concept was validated in a double-MHSP (Micro-Hole & Strip Plate) cascaded multiplier operated in xenon, where the intermediate scintillation stage provided optical gain of ~60. The double-MHSP detector had a total gain above 10^4 and energy resolution of 18% FWHM for 5.9 keV x-rays.
This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon and nuclei where their structure is dominated by gluons. Moreover, polarized beams in the EIC will give unprecedented access to the spatial and spin structure of the proton, neutron, and light ions. The studies leading to this document were commissioned and organized by the EIC User Group with the objective of advancing the state and detail of the physics program and developing detector concepts that meet the emerging requirements in preparation for the realization of the EIC. The effort aims to provide the basis for further development of concepts for experimental equipment best suited for the science needs, including the importance of two complementary detectors and interaction regions. This report consists of three volumes. Volume I is an executive summary of our findings and developed concepts. In Volume II we describe studies of a wide range of physics measurements and the emerging requirements on detector acceptance and performance. Volume III discusses general-purpose detector concepts and the underlying technologies to meet the physics requirements. These considerations will form the basis for a world-class experimental program that aims to increase our understanding of the fundamental structure of all visible matter
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا