Do you want to publish a course? Click here

The Photon-Assisted Cascaded Electron Multiplier: a Concept for Potential Avalanche-Ion Blocking

59   0   0.0 ( 0 )
 Added by Alexey Lyashenko
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a Photon-Assisted Cascaded Electron Multipliers (PACEM) which has a potential for ion back-flow blocking in gaseous radiation detectors: the avalanche from a first multiplication stage propagates to the successive one via its photons, which in turn induce photoelectron emission from a photocathode deposited on the second multiplier stage; the multiplication process may further continue via electron-avalanche propagation. The photon-mediated stage allows, by a proper choice of geometry and fields, complete blocking of the ion back-flow into the first element; thus, only ions from the latter will flow back to the drift region. The PACEM concept was validated in a double-MHSP (Micro-Hole & Strip Plate) cascaded multiplier operated in xenon, where the intermediate scintillation stage provided optical gain of ~60. The double-MHSP detector had a total gain above 10^4 and energy resolution of 18% FWHM for 5.9 keV x-rays.

rate research

Read More

A successful operation of a new optical readout system (THGEM + WLS + MGPDs (multichannel array of multipixel avalanche Geiger photodiodes) in a two-phase liquid xenon detector was demonstrated.
A novel concept for ion blocking in gas-avalanche detectors was developed, comprising cascaded micro-hole electron multipliers with patterned electrodes for ion defocusing. This leads to ion blocking at the 10^{-4} level, in DC mode, in operation conditions adequate for TPCs and for gaseous photomultipliers. The concept was validated in a cascaded visible-sensitive gas avalanche photomultiplier operating at atmospheric pressure of Ar/CH_{4} (95/5) with a bi-alkali photocathode. While in previous works high gain, in excess of 10^{5}, was reached only in a pulse-gated cascaded-GEM gaseous photomultiplier, the present device yielded, for the first time, similar gain in DC mode. We describe shortly the physical processes involved in the charge transport within gaseous photomultipliers and the ion blocking method. We present results of ion backflow fraction and of electron multiplication in cascaded patterned-electrode gaseous photomultiplier with K-Cs-Sb, Na-K-Sb and Cs-Sb visible-sensitive photocathodes, operated in DC mode.
The operation principle and preliminary results of a novel gas-avalanche patterned hole electron multiplier, the Thick-COBRA (THCOBRA), are presented. This micro-hole structure is derived from the THGEM and MHSP. Sub-millimeter diameter holes are mechanically drilled in a thin G10 plate, Cu-clad on both faces; on one of the faces the Cu is etched to produce additional anode strips winding between circular cathode strips. Primary avalanches occurring within the holes are followed by additional ones at the anode-strips vicinity. Gains in excess of 5*104 were reached with 22.1 x-rays in Ar, Ne and Ar-10%CH4, with 12.2 % FWHM energy resolution in Ar-10%CH4. Higher gains were measured with single photoelectrons. This robust multiplier may have numerous potential applications.
For the first time secondary scintillation, generated within the holes of a thick gas electron multiplier (TGEM) immersed in liquid argon, has been observed and measured using a silicon photomultiplier device (SiPM). 250 electron-ion pairs, generated in liquid argon via the interaction of a 5.9KeV Fe-55 gamma source, were drifted under the influence of a 2.5KV/cm field towards a 1.5mm thickness TGEM, the local field sufficiently high to generate secondary scintillation light within the liquid as the charge traversed the central region of the TGEM hole. The resulting VUV light was incident on an immersed SiPM device coated in the waveshifter tetraphenyl butadiene (TPB), the emission spectrum peaked at 460nm in the high quantum efficiency region of the device. For a SiPM over-voltage of 1V, a TGEM voltage of 9.91KV, and a drift field of 2.5KV/cm, a total of 62 photoelectrons were produced at the SiPM device per Fe-55 event, corresponding to an estimated gain of 150 photoelectrons per drifted electron.
A prototype Gas Electron Multiplier (GEM) detector is under construction for medical imaging purposes. A single thick GEM of size 10x10 cm^2 is assembled inside a square shaped air-tight box which is made of Perspex glass. In order to ionize gas inside the drift field two types of voltage supplier circuits were fabricated, and array of 2x4 pads of each size 4x8 mm^2 were utilized for collecting avalanche charges. Preliminary testing results show that the circuit which produces high voltage and low current is better than that of low voltage and high current supplier circuit in terms of x-ray signal counting rates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا