Do you want to publish a course? Click here

Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report

216   0   0.0 ( 0 )
 Added by Douglas Higinbotham
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon and nuclei where their structure is dominated by gluons. Moreover, polarized beams in the EIC will give unprecedented access to the spatial and spin structure of the proton, neutron, and light ions. The studies leading to this document were commissioned and organized by the EIC User Group with the objective of advancing the state and detail of the physics program and developing detector concepts that meet the emerging requirements in preparation for the realization of the EIC. The effort aims to provide the basis for further development of concepts for experimental equipment best suited for the science needs, including the importance of two complementary detectors and interaction regions. This report consists of three volumes. Volume I is an executive summary of our findings and developed concepts. In Volume II we describe studies of a wide range of physics measurements and the emerging requirements on detector acceptance and performance. Volume III discusses general-purpose detector concepts and the underlying technologies to meet the physics requirements. These considerations will form the basis for a world-class experimental program that aims to increase our understanding of the fundamental structure of all visible matter



rate research

Read More

The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ range extended by four orders of magnitude as compared to previous lepton-nucleus DIS experiments for novel investigations of neutrons and nuclear structure, the initial conditions of Quark-Gluon Plasma formation and further quantum chromodynamic phenomena. The LHeC may be realised either as a ring-ring or as a linac-ring collider. Optics and beam dynamics studies are presented for bo
Advanced detector R&D requires performing computationally intensive and detailed simulations as part of the detector-design optimization process. We propose a general approach to this process based on Bayesian optimization and machine learning that encodes detector requirements. As a case study, we focus on the design of the dual-radiator Ring Imaging Cherenkov (dRICH) detector under development as part of the particle-identification system at the future Electron-Ion Collider (EIC). The EIC is a US-led frontier accelerator project for nuclear physics, which has been proposed to further explore the structure and interactions of nuclear matter at the scale of sea quarks and gluons. We show that the detector design obtained with our automated and highly parallelized framework outperforms the baseline dRICH design within the assumptions of the current model. Our approach can be applied to any detector R&D, provided that realistic simulations are available.
The PHENIX collaboration presents here a concept for a detector at a future Electron Ion Collider (EIC). The EIC detector proposed here, referred to as ePHENIX, will have excellent performance for a broad range of exciting EIC physics measurements, providing powerful investigations not currently available that will dramatically advance our understanding of how quantum chromodynamics binds the proton and forms nuclear matter.
Absolute normalisation of the LHC measurements with a precision of O(1%) is desirable but beyond the reach of the present LHC detectors. This series of papers proposes and evaluates a measurement method capable to achieve such a precision target. In our earlier paper we have selected the phase-space region where the lepton pair production cross section in pp collisions at the LHC can be controlled with < 1 % precision and is large enough to reach a comparable statistical accuracy of the absolute luminosity measurement on the day-by-day basis. In the present one the performance requirements for a dedicated detector, indispensable to efficiently select events in the proposed phase-space region, are discussed.
Particle IDentification (PID) is a central requirement of the experiments at the future EIC. Hadron PID at high momenta by RICH techniques requires the use of low density gaseous radiators, where the challenge is the limited length of the radiator region available at a collider experiment. By selecting a photon wavelength range in the far UV domain, around 120 nm, the number of detectable photons can be increased. Ideal sensors are gaseous Photon Detectors (PD) with CsI photocathode, where the status of the art is represented by the MPGD-based PDs at COMPASS RICH. Detector optimization is required for the application at EIC. Here we report about a dedicated prototype where the sensor pad-size has been reduced to preserve the angular resolution. A new DAQ system based on the SRS readout electronics has been developed for the laboratory and test beam studies of the prototype.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا