No Arabic abstract
In this work, we investigate calcium titanate (CaTiO3 - CTO) using X-ray diffraction and Raman spectroscopy up to 60 and 55 GPa respectively. Both experiments show that the orthorhombic Pnma structure remains stable up to the highest pressures measured, in contradiction to ab-initio predictions. A fit of the compression data with a second-order Birch-Murnaghan equation of state yields a bulk modulus K0 of 181.0(6) GPa. The orthorhombic distortion is found to increase slightly with pressure, in agreement with previous experiments at lower pressures and the general rules for the evolution of perovskites under pressure. High-pressure polarized Raman spectra also enable us to clarify the Raman mode assignment of CTO and identify the modes corresponding to rigid rotation of the octahedra, A-cation shifts and Ti-O bond stretching. The Raman signature is then discussed in terms of compression mechanisms.
We report a study of the structural phase transitions induced by pressure in bulk black phosphorus by using both synchrotron x-ray diffraction for pressures up to 12.2 GPa and Raman spectroscopy up to 18.2 GPa. Very recently black phosphorus attracted large attention because of the unique properties of fewlayers samples (phosphorene), but some basic questions are still open in the case of the bulk system. As concerning the presence of a Raman spectrum above 10 GPa, which should not be observed in an elemental simple cubic system, we propose a new explanation by attributing a key role to the non-hydrostatic conditions occurring in Raman experiments. Finally, a combined analysis of Raman and XRD data allowed us to obtain quantitative information on presence and extent of coexistences between different structural phases from ~5 up to ~15 GPa. This information can have an important role in theoretical studies on pressure-induced structural and electronic phase transitions in black phosphorus.
We have measured the lattice volume of ice VIII in different pressure-temperature pathways and found isothermal compression at low-temperature conditions makes the volume larger. Ice VIII has become its high-pressure phase with the molar volume of 6.45 cm^3 at 10 K where the pressure can be estimated as 60.4 GPa based on the third-order Birch-Murnaghan equation with parameters determined in this study (K_0= 32.4 GPa, K_0= 3.7, and V_0= 11.9 cm^3). The present results indicate that this high-pressure state is paraelectric with tetragonal symmetry.
SrMoO4 was studied under compression up to 25 GPa by angle-dispersive x-ray diffraction. A phase transition was observed from the scheelite-structured ambient phase to a monoclinic fergusonite phase at 12.2(9) GPa with cell parameters a = 5.265(9) A, b = 11.191(9) A, c = 5.195 (5) A, and beta = 90.9, Z = 4 at 13.1 GPa. There is no significant volume collapse at the phase transition. No additional phase transitions were observed and on release of pressure the initial phase is recovered, implying that the observed structural modifications are reversible. The reported transition appeared to be a ferroelastic second-order transformation producing a structure that is a monoclinic distortion of the low-pressure phase and was previously observed in compounds isostructural to SrMoO4. A possible mechanism for the transition is proposed and its character is discussed in terms of the present data and the Landau theory. Finally, the EOS is reported and the anisotropic compressibility of the studied crystal is discussed in terms of the compression of the Sr-O and Mo-O bonds.
Epitaxial BiFeO3/SrRuO3 superlattices have been grown by pulsed laser deposition on a (001) oriented LaAlO3 substrate and probed by X-ray diffraction and Raman spectroscopy. To investigate the structural competition between rhombohedral BiFeO3 and orthorhombic SrRuO3 the total thickness of all SLs was kept constant and the bilayer thickness (period) {Lambda} was varied. The interlayer strain effects are therefore tuned from large strain effects (short {Lambda} period) to quasi-relaxed structure (large {Lambda}). A complementary investigation using X-ray diffraction and phonon dynamics hints to change from a rhombohedral to a tetragonal structure in the superlattices with the increase of the interlayer strain effect.
Cubic boron phosphide BP has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B0 = 174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state data, allowed us to estimate the Gruneisen parameters of the TO and LO modes of zinc-blende structure, {gamma}GTO = 1.16 and {gamma}GLO = 1.04, just like in the case of other AIIIBV diamond-like phases, for which {gamma}GTO > {gamma}GLO = 1. We also established that the pressure dependence of the effective electro-optical constant {alpha} is responsible for a strong change in relative intensities of the TO and LO modes from ITO/ILO ~0.25 at 0.1 MPa to ITO/ILO ~2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.