Do you want to publish a course? Click here

Extension of the Coherence Time by Generating MW Dressed States in a Single NV Centre in Diamond

60   0   0.0 ( 0 )
 Added by Hiroki Morishita
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nitrogen-vacancy (NV) centres in diamond hold promise in quantum sensing applications. A major interest in them is an enhancement of their sensitivity by the extension of the coherence time ($T_2$). In this report, we experimentally generated more than four dressed states in a single NV centre in diamond based on Autler-Townes splitting (ATS). We also observed the extension of the coherence time to $T_2 sim$ 1.5 ms which is more than two orders of magnitude longer than that of the undressed states. As an example of a quantum application using these results we propose a protocol of quantum sensing, which shows more than an order of magnitude enhancement in the sensitivity.



rate research

Read More

The negatively charged nitrogen-vacancy (NV-) centre in diamond has many exciting applications in quantum nano-metrology, including magnetometry, electrometry, thermometry and piezometry. Indeed, it is possible for a single NV- centre to measure the complete three-dimensional vector of the local electric field or the position of a single fundamental charge in ambient conditions. However, in order to achieve such vector measurements, near complete knowledge of the orientation of the centres defect structure is required. Here, we demonstrate an optically detected magnetic resonance (ODMR) technique employing rotations of static electric and magnetic fields that precisely determines the orientation of the centres major and minor trigonal symmetry axes. Thus, our technique is an enabler of the centres existing vector sensing applications and also motivates new applications in multi-axis rotation sensing, NV growth characterization and diamond crystallography.
129 - A. Young , C.Y. Hu , L. Marseglia 2008
We propose a high efficiency high fidelity measurement of the ground state spin of a single NV center in diamond, using the effects of cavity quantum electrodynamics. The scheme we propose is based in the one dimensional atom or Purcell regime, removing the need for high Q cavities that are challenging to fabricate. The ground state of the NV center consists of three spin levels $^{3}A_{(m=0)}$ and $^{3}A_{(m=pm1)}$ (the $pm1$ states are near degenerate in zero field). These two states can undergo transitions to the excited ($^{3}E$) state, with an energy difference of $approx7-10$ $mu$eV between the two. By choosing the correct Q factor, this small detuning between the two transitions results in a dramatic change in the intensity of reflected light. We show the change in reflected intensity can allow us to read out the ground state spin using a low intensity laser with an error rate of $approx5.5times10^{-3}$, when realistic cavity and experimental parameters are considered. Since very low levels of light are used to probe the state of the spin we limit the number of florescence cycles, thereby limiting the non spin preserving transitions through the intermediate singlet state $^{1}A$.
Dynamical decoupling is a powerful technique for extending the coherence time (T$_2$) of qubits. We apply this technique to the electron spin qubit of a single nitrogen-vacancy center in type IIa diamond. In a crystal with natural abundance of $^{13}$C nuclear spins, we extend the decoherence time up to 2.2 ms. This is close to the T$_1$ value of this NV center (4 ms). Since dynamical decoupling must perform well for arbitrary initial conditions, we measured the dependence on the initial state and compared the performance of different sequences with respect to initial state dependence and robustness to experimental imperfections.
The characteristic transition of the NV- centre at 637 nm is between ${}^3mathrm{A}_2$ and ${}^3mathrm{E}$ triplet states. There are also intermediate ${}^1mathrm{A}_1$ and ${}^1mathrm{E}$ singlet states, and the infrared transition at 1042 nm between these singlets is studied here using uniaxial stress. The stress shift and splitting parameters are determined, and the physical interaction giving rise to the parameters is considered within the accepted electronic model of the centre. It is established that this interaction for the infrared transition is due to a modification of electron-electron Coulomb repulsion interaction. This is in contrast to the visible 637 nm transition where shifts and splittings arise from modification to the one-electron Coulomb interaction. It is also established that a dynamic Jahn-Teller interaction is associated with the singlet ${}^1mathrm{E}$ state, which gives rise to a vibronic level 115 $mathrm{cm}^{-1}$ above the ${}^1mathrm{E}$ electronic state. Arguments associated with this level are used to provide experimental confirmation that the ${}^1mathrm{A}_1$ is the upper singlet level and ${}^1mathrm{E}$ is the lower singlet level.
We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precisely depth controlling by a moderately oxidative at 580{deg}C in air. By successive nanoscale etching, NV centers could be brought close to the diamond surface step by step, which enable us to trace the evolution of the number of NV centers remained in the chip and to study the depth dependence of coherence times of NV centers with the diamond etching. Our results showed that the coherence times of NV centers declined rapidly with the depth reduction in their last about 22 nm before they finally disappeared, revealing a critical depth for the influence of rapid fluctuating surface spin bath. By monitoring the coherence time variation with depth, we could make a shallow NV center with long coherence time for detecting external spins with high sensitivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا