Do you want to publish a course? Click here

Singlet levels of the NV$^{-}$ centre in diamond

137   0   0.0 ( 0 )
 Added by Lachlan Rogers
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The characteristic transition of the NV- centre at 637 nm is between ${}^3mathrm{A}_2$ and ${}^3mathrm{E}$ triplet states. There are also intermediate ${}^1mathrm{A}_1$ and ${}^1mathrm{E}$ singlet states, and the infrared transition at 1042 nm between these singlets is studied here using uniaxial stress. The stress shift and splitting parameters are determined, and the physical interaction giving rise to the parameters is considered within the accepted electronic model of the centre. It is established that this interaction for the infrared transition is due to a modification of electron-electron Coulomb repulsion interaction. This is in contrast to the visible 637 nm transition where shifts and splittings arise from modification to the one-electron Coulomb interaction. It is also established that a dynamic Jahn-Teller interaction is associated with the singlet ${}^1mathrm{E}$ state, which gives rise to a vibronic level 115 $mathrm{cm}^{-1}$ above the ${}^1mathrm{E}$ electronic state. Arguments associated with this level are used to provide experimental confirmation that the ${}^1mathrm{A}_1$ is the upper singlet level and ${}^1mathrm{E}$ is the lower singlet level.



rate research

Read More

The study establishes that the degree of optically induced spin polarization that can be achieved for NV$^- $in 1b diamond is limited by the concentration of single substitutional nitrogen, N$^0$ . The polarization of the individual NV centres in the diamond is dependent on the separation of the NV$^-$ and the nitrogen donor. When the NV$^-$ - N$^+$ pair separation is large the properties of the pair will be as for single sites and a high degree of spin polarization attainable. When the separation decreases the emission is reduced, the lifetime shortened and the spin polarization downgraded. The deterioration occurs as a consequence of electron tunneling in the excited state from NV$^-$ to N$^+$ and results in an optical cycle that includes NV$^0$. The tunneling process is linear in optical excitation and more prevalent the closer the N$^+$ is to the NV$^-$ centre. However, the separation between the NV$^-$ and its donor N$^+$ can be effected by light through the excitation of NV$^-$ and/or ionization of N$^0$. The optical excitation that creates the spin polarization can also modify the sample properties and during excitation creates charge dynamics. The consequence is that the magnitude of spin polarization, the spin relaxation and coherence times T$_1$ and T$_2$ have a dependence on the nitrogen concentration and on the excitation wavelength. The adjacent N$^+$ gives an electric field that Stark shifts the NV$^-$ transitions and for an ensemble results in line broadening. It is observation of changes of these Stark induced effects that allow the variation in NV$^-$ - N$^+$ separation to be monitored. Spectroscopic measurements including that of the varying line widths are central to the study. They are made at low temperatures and include extensive measurements of the NV$^-$ optical transition at 637 nm, the infrared transition at 1042 nm and ODMR at 2.87 GHz.
Significant attention has been recently focused on the realization of high precision nano-thermometry using the spin-resonance temperature shift of the negatively charged nitrogen-vacancy (NV-) center in diamond. However, the precise physical origins of the temperature shift is yet to be understood. Here, the shifts of the centers optical and spin resonances are observed and a model is developed that identifies the origin of each shift to be a combination of thermal expansion and electron-phonon interactions. Our results provide new insight into the centers vibronic properties and reveal implications for NV- thermometry.
The novel aspect of the centre (NV-) in diamond is the high degree of spin polarisation achieved through optical illumination. In this paper it is shown that the spin polarisation occurs as a consequence of an electron-vibration interaction combined with spin-orbit interaction, and an electronic model involving these interactions is developed to account for the observed polarisation.
We report measurements of the optical properties of the 1042 nm transition of negatively-charged Nitrogen-Vacancy (NV) centers in type 1b diamond. The results indicate that the upper level of this transition couples to the m_s=+/-1 sublevels of the {^3}E excited state and is short-lived, with a lifetime <~ 1 ns. The lower level is shown to have a temperature-dependent lifetime of 462(10) ns at 4.4 K and 219(3) ns at 295 K. The light-polarization dependence of 1042 nm absorption confirms that the transition is between orbitals of A_1 and E character. The results shed new light on the NV level structure and optical pumping mechanism.
The nitrogen-vacancy (NV) colour centre in diamond is an important physical system for emergent quantum technologies, including quantum metrology, information processing and communications, as well as for various nanotechnologies, such as biological and sub-diffraction limit imaging, and for tests of entanglement in quantum mechanics. Given this array of existing and potential applications and the almost 50 years of NV research, one would expect that the physics of the centre is well understood, however, the study of the NV centre has proved challenging, with many early assertions now believed false and many remaining issues yet to be resolved. This review represents the first time that the key empirical and ab initio results have been extracted from the extensive NV literature and assembled into one consistent picture of the current understanding of the centre. As a result, the key unresolved issues concerning the NV centre are identified and the possible avenues for their resolution are examined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا