Do you want to publish a course? Click here

Cavity Enhanced Spin Measurement of an NV Centre in Diamond

129   0   0.0 ( 0 )
 Added by Andrew Young
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a high efficiency high fidelity measurement of the ground state spin of a single NV center in diamond, using the effects of cavity quantum electrodynamics. The scheme we propose is based in the one dimensional atom or Purcell regime, removing the need for high Q cavities that are challenging to fabricate. The ground state of the NV center consists of three spin levels $^{3}A_{(m=0)}$ and $^{3}A_{(m=pm1)}$ (the $pm1$ states are near degenerate in zero field). These two states can undergo transitions to the excited ($^{3}E$) state, with an energy difference of $approx7-10$ $mu$eV between the two. By choosing the correct Q factor, this small detuning between the two transitions results in a dramatic change in the intensity of reflected light. We show the change in reflected intensity can allow us to read out the ground state spin using a low intensity laser with an error rate of $approx5.5times10^{-3}$, when realistic cavity and experimental parameters are considered. Since very low levels of light are used to probe the state of the spin we limit the number of florescence cycles, thereby limiting the non spin preserving transitions through the intermediate singlet state $^{1}A$.



rate research

Read More

The negatively charged nitrogen-vacancy (NV-) centre in diamond has many exciting applications in quantum nano-metrology, including magnetometry, electrometry, thermometry and piezometry. Indeed, it is possible for a single NV- centre to measure the complete three-dimensional vector of the local electric field or the position of a single fundamental charge in ambient conditions. However, in order to achieve such vector measurements, near complete knowledge of the orientation of the centres defect structure is required. Here, we demonstrate an optically detected magnetic resonance (ODMR) technique employing rotations of static electric and magnetic fields that precisely determines the orientation of the centres major and minor trigonal symmetry axes. Thus, our technique is an enabler of the centres existing vector sensing applications and also motivates new applications in multi-axis rotation sensing, NV growth characterization and diamond crystallography.
The study establishes that the degree of optically induced spin polarization that can be achieved for NV$^- $in 1b diamond is limited by the concentration of single substitutional nitrogen, N$^0$ . The polarization of the individual NV centres in the diamond is dependent on the separation of the NV$^-$ and the nitrogen donor. When the NV$^-$ - N$^+$ pair separation is large the properties of the pair will be as for single sites and a high degree of spin polarization attainable. When the separation decreases the emission is reduced, the lifetime shortened and the spin polarization downgraded. The deterioration occurs as a consequence of electron tunneling in the excited state from NV$^-$ to N$^+$ and results in an optical cycle that includes NV$^0$. The tunneling process is linear in optical excitation and more prevalent the closer the N$^+$ is to the NV$^-$ centre. However, the separation between the NV$^-$ and its donor N$^+$ can be effected by light through the excitation of NV$^-$ and/or ionization of N$^0$. The optical excitation that creates the spin polarization can also modify the sample properties and during excitation creates charge dynamics. The consequence is that the magnitude of spin polarization, the spin relaxation and coherence times T$_1$ and T$_2$ have a dependence on the nitrogen concentration and on the excitation wavelength. The adjacent N$^+$ gives an electric field that Stark shifts the NV$^-$ transitions and for an ensemble results in line broadening. It is observation of changes of these Stark induced effects that allow the variation in NV$^-$ - N$^+$ separation to be monitored. Spectroscopic measurements including that of the varying line widths are central to the study. They are made at low temperatures and include extensive measurements of the NV$^-$ optical transition at 637 nm, the infrared transition at 1042 nm and ODMR at 2.87 GHz.
We present a highly sensitive miniaturized cavity-enhanced room-temperature magnetic-field sensor based on nitrogen-vacancy (NV) centers in diamond. The magnetic resonance signal is detected by probing absorption on the 1042,nm spin-singlet transition. To improve the absorptive signal the diamond is placed in an optical resonator. The device has a magnetic-field sensitivity of 28 pT/$sqrt{rm{Hz}}$, a projected photon shot-noise-limited sensitivity of 22 pT/$sqrt{rm{Hz}}$ and an estimated quantum projection-noise-limited sensitivity of 0.43 pT/$sqrt{rm{Hz}}$ with the sensing volume of $sim$ 390 $mu$m $times$ 4500 $mu$m$^{2}$. The presented miniaturized device is the basis for an endoscopic magnetic field sensor for biomedical applications.
The characteristic transition of the NV- centre at 637 nm is between ${}^3mathrm{A}_2$ and ${}^3mathrm{E}$ triplet states. There are also intermediate ${}^1mathrm{A}_1$ and ${}^1mathrm{E}$ singlet states, and the infrared transition at 1042 nm between these singlets is studied here using uniaxial stress. The stress shift and splitting parameters are determined, and the physical interaction giving rise to the parameters is considered within the accepted electronic model of the centre. It is established that this interaction for the infrared transition is due to a modification of electron-electron Coulomb repulsion interaction. This is in contrast to the visible 637 nm transition where shifts and splittings arise from modification to the one-electron Coulomb interaction. It is also established that a dynamic Jahn-Teller interaction is associated with the singlet ${}^1mathrm{E}$ state, which gives rise to a vibronic level 115 $mathrm{cm}^{-1}$ above the ${}^1mathrm{E}$ electronic state. Arguments associated with this level are used to provide experimental confirmation that the ${}^1mathrm{A}_1$ is the upper singlet level and ${}^1mathrm{E}$ is the lower singlet level.
Nitrogen-vacancy (NV) centres in diamond hold promise in quantum sensing applications. A major interest in them is an enhancement of their sensitivity by the extension of the coherence time ($T_2$). In this report, we experimentally generated more than four dressed states in a single NV centre in diamond based on Autler-Townes splitting (ATS). We also observed the extension of the coherence time to $T_2 sim$ 1.5 ms which is more than two orders of magnitude longer than that of the undressed states. As an example of a quantum application using these results we propose a protocol of quantum sensing, which shows more than an order of magnitude enhancement in the sensitivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا