No Arabic abstract
We investigate factors controlling DNN diversity in the context of the Google Cloud and YouTube-8M Video Understanding Challenge. While it is well-known that ensemble methods improve prediction performance, and that combining accurate but diverse predictors helps, there is little knowledge on how to best promote & measure DNN diversity. We show that diversity can be cultivated by some unexpected means, such as model over-fitting or dropout variations. We also present details of our solution to the video understanding problem, which ranked #7 in the Kaggle competition (competing as the Yeti team).
We propose to leverage a generic object tracker in order to perform object mining in large-scale unlabeled videos, captured in a realistic automotive setting. We present a dataset of more than 360000 automatically mined object tracks from 10+ hours of video data (560000 frames) and propose a method for automated novel category discovery and detector learning. In addition, we show preliminary results on using the mined tracks for object detector adaptation.
Video recognition has been advanced in recent years by benchmarks with rich annotations. However, research is still mainly limited to human action or sports recognition - focusing on a highly specific video understanding task and thus leaving a significant gap towards describing the overall content of a video. We fill this gap by presenting a large-scale Holistic Video Understanding Dataset~(HVU). HVU is organized hierarchically in a semantic taxonomy that focuses on multi-label and multi-task video understanding as a comprehensive problem that encompasses the recognition of multiple semantic aspects in the dynamic scene. HVU contains approx.~572k videos in total with 9 million annotations for training, validation, and test set spanning over 3142 labels. HVU encompasses semantic aspects defined on categories of scenes, objects, actions, events, attributes, and concepts which naturally captures the real-world scenarios. We demonstrate the generalization capability of HVU on three challenging tasks: 1.) Video classification, 2.) Video captioning and 3.) Video clustering tasks. In particular for video classification, we introduce a new spatio-temporal deep neural network architecture called Holistic Appearance and Temporal Network~(HATNet) that builds on fusing 2D and 3D architectures into one by combining intermediate representations of appearance and temporal cues. HATNet focuses on the multi-label and multi-task learning problem and is trained in an end-to-end manner. Via our experiments, we validate the idea that holistic representation learning is complementary, and can play a key role in enabling many real-world applications.
RGBT tracking receives a surge of interest in the computer vision community, but this research field lacks a large-scale and high-diversity benchmark dataset, which is essential for both the training of deep RGBT trackers and the comprehensive evaluation of RGBT tracking methods. To this end, we present a Large-scale High-diversity benchmark for RGBT tracking (LasHeR) in this work. LasHeR consists of 1224 visible and thermal infrared video pairs with more than 730K frame pairs in total. Each frame pair is spatially aligned and manually annotated with a bounding box, making the dataset well and densely annotated. LasHeR is highly diverse capturing from a broad range of object categories, camera viewpoints, scene complexities and environmental factors across seasons, weathers, day and night. We conduct a comprehensive performance evaluation of 12 RGBT tracking algorithms on the LasHeR dataset and present detailed analysis to clarify the research room in RGBT tracking. In addition, we release the unaligned version of LasHeR to attract the research interest for alignment-free RGBT tracking, which is a more practical task in real-world applications. The datasets and evaluation protocols are available at: https://github.com/BUGPLEASEOUT/LasHeR.
Although various image-based domain adaptation (DA) techniques have been proposed in recent years, domain shift in videos is still not well-explored. Most previous works only evaluate performance on small-scale datasets which are saturated. Therefore, we first propose two large-scale video DA datasets with much larger domain discrepancy: UCF-HMDB_full and Kinetics-Gameplay. Second, we investigate different DA integration methods for videos, and show that simultaneously aligning and learning temporal dynamics achieves effective alignment even without sophisticated DA methods. Finally, we propose Temporal Attentive Adversarial Adaptation Network (TA3N), which explicitly attends to the temporal dynamics using domain discrepancy for more effective domain alignment, achieving state-of-the-art performance on four video DA datasets (e.g. 7.9% accuracy gain over Source only from 73.9% to 81.8% on HMDB --> UCF, and 10.3% gain on Kinetics --> Gameplay). The code and data are released at http://github.com/cmhungsteve/TA3N.
This paper introduces the system we developed for the Google Cloud & YouTube-8M Video Understanding Challenge, which can be considered as a multi-label classification problem defined on top of the large scale YouTube-8M Dataset. We employ a large set of techniques to aggregate the provided frame-level feature representations and generate video-level predictions, including several variants of recurrent neural networks (RNN) and generalized VLAD. We also adopt several fusion strategies to explore the complementarity among the models. In terms of the official metric GAP@20 (global average precision at 20), our best fusion model attains 0.84198 on the public 50% of test data and 0.84193 on the private 50% of test data, ranking 4th out of 650 teams worldwide in the competition.