Do you want to publish a course? Click here

Towards Large-Scale Video Video Object Mining

163   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We propose to leverage a generic object tracker in order to perform object mining in large-scale unlabeled videos, captured in a realistic automotive setting. We present a dataset of more than 360000 automatically mined object tracks from 10+ hours of video data (560000 frames) and propose a method for automated novel category discovery and detector learning. In addition, we show preliminary results on using the mined tracks for object detector adaptation.



rate research

Read More

This paper addresses the problem of object discovery from unlabeled driving videos captured in a realistic automotive setting. Identifying recurring object categories in such raw video streams is a very challenging problem. Not only do object candidates first have to be localized in the input images, but many interesting object categories occur relatively infrequently. Object discovery will therefore have to deal with the difficulties of operating in the long tail of the object distribution. We demonstrate the feasibility of performing fully automatic object discovery in such a setting by mining object tracks using a generic object tracker. In order to facilitate further research in object discovery, we release a collection of more than 360,000 automatically mined object tracks from 10+ hours of video data (560,000 frames). We use this dataset to evaluate the suitability of different feature representations and clustering strategies for object discovery.
We report on CMU Informedia Labs system used in Googles YouTube 8 Million Video Understanding Challenge. In this multi-label video classification task, our pipeline achieved 84.675% and 84.662% GAP on our evaluation split and the official test set. We attribute the good performance to three components: 1) Refined video representation learning with residual links and hypercolumns 2) Latent concept mining which captures interactions among concepts. 3) Learning with temporal segments and weighted multi-model ensemble. We conduct experiments to validate and analyze the contribution of our models. We also share some unsuccessful trials leveraging conventional approaches such as recurrent neural networks for video representation learning for this large-scale video dataset. All the codes to reproduce our results are publicly available at https://github.com/Martini09/informedia-yt8m-release.
We explore object discovery and detector adaptation based on unlabeled video sequences captured from a mobile platform. We propose a fully automatic approach for object mining from video which builds upon a generic object tracking approach. By applying this method to three large video datasets from autonomous driving and mobile robotics scenarios, we demonstrate its robustness and generality. Based on the object mining results, we propose a novel approach for unsupervised object discovery by appearance-based clustering. We show that this approach successfully discovers interesting objects relevant to driving scenarios. In addition, we perform self-supervised detector adaptation in order to improve detection performance on the KITTI dataset for existing categories. Our approach has direct relevance for enabling large-scale object learning for autonomous driving.
Video recognition has been advanced in recent years by benchmarks with rich annotations. However, research is still mainly limited to human action or sports recognition - focusing on a highly specific video understanding task and thus leaving a significant gap towards describing the overall content of a video. We fill this gap by presenting a large-scale Holistic Video Understanding Dataset~(HVU). HVU is organized hierarchically in a semantic taxonomy that focuses on multi-label and multi-task video understanding as a comprehensive problem that encompasses the recognition of multiple semantic aspects in the dynamic scene. HVU contains approx.~572k videos in total with 9 million annotations for training, validation, and test set spanning over 3142 labels. HVU encompasses semantic aspects defined on categories of scenes, objects, actions, events, attributes, and concepts which naturally captures the real-world scenarios. We demonstrate the generalization capability of HVU on three challenging tasks: 1.) Video classification, 2.) Video captioning and 3.) Video clustering tasks. In particular for video classification, we introduce a new spatio-temporal deep neural network architecture called Holistic Appearance and Temporal Network~(HATNet) that builds on fusing 2D and 3D architectures into one by combining intermediate representations of appearance and temporal cues. HATNet focuses on the multi-label and multi-task learning problem and is trained in an end-to-end manner. Via our experiments, we validate the idea that holistic representation learning is complementary, and can play a key role in enabling many real-world applications.
128 - Kai Xu , Angela Yao 2021
We propose an efficient inference framework for semi-supervised video object segmentation by exploiting the temporal redundancy of the video. Our method performs inference on selected keyframes and makes predictions for other frames via propagation based on motion vectors and residuals from the compressed video bitstream. Specifically, we propose a new motion vector-based warping method for propagating segmentation masks from keyframes to other frames in a multi-reference manner. Additionally, we propose a residual-based refinement module that can correct and add detail to the block-wise propagated segmentation masks. Our approach is flexible and can be added on top of existing video object segmentation algorithms. With STM with top-k filtering as our base model, we achieved highly competitive results on DAVIS16 and YouTube-VOS with substantial speedups of up to 4.9X with little loss in accuracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا