Do you want to publish a course? Click here

A constrained model for MEMS with varying dielectric properties

115   0   0.0 ( 0 )
 Added by Philippe Laurencot
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

A semilinear parabolic equation with constraint modeling the dynamics of a microelectromechanical system (MEMS) is studied. In contrast to the commonly used MEMS model, the well-known pull-in phenomenon occurring above a critical potential threshold is not accompanied by a breakdown of the model, but is recovered by the saturation of the constraint for pulled-in states. It is shown that a maximal stationary solution exists and that saturation only occurs for large potential values. In addition, the existence, uniqueness, and large time behavior of solutions to the evolution equation are studied.



rate research

Read More

An idealized electrostatically actuated microelectromechanical system (MEMS) involving an elastic plate with a heterogeneous dielectric material is considered. Starting from the electrostatic and mechanical energies, the governing evolution equations for the electrostatic potential and the plate deflection are derived from the corresponding energy balance. This leads to a free boundary transmission problem due to a jump of the dielectric permittivity across the interface separating elastic plate and free space. Reduced models retaining the influence of the heterogeneity of the elastic plate under suitable assumptions are obtained when either the elastics plate thickness or the aspect ratio of the device vanishes.
162 - Kin Ming Hui 2010
Let $Omegasubsetmathbb{R}^n$ be a $C^2$ bounded domain and $chi>0$ be a constant. We will prove the existence of constants $lambda_Ngelambda_N^{ast}gelambda^{ast}(1+chiint_{Omega}frac{dx}{1-w_{ast}})^2$ for the nonlocal MEMS equation $-Delta v=lam/(1-v)^2(1+chiint_{Omega}1/(1-v)dx)^2$ in $Omega$, $v=0$ on $1Omega$, such that a solution exists for any $0lelambda<lambda_N^{ast}$ and no solution exists for any $lambda>lambda_N$ where $lambda^{ast}$ is the pull-in voltage and $w_{ast}$ is the limit of the minimal solution of $-Delta v=lam/(1-v)^2$ in $Omega$ with $v=0$ on $1Omega$ as $lambda earrow lambda^{ast}$. We will prove the existence, uniqueness and asymptotic behaviour of the global solution of the corresponding parabolic nonlocal MEMS equation under various boundedness conditions on $lambda$. We also obtain the quenching behaviour of the solution of the parabolic nonlocal MEMS equation when $lambda$ is large.
Motivated by its application in ecology, we consider an extended Klausmeier model, a singularly perturbed reaction-advection-diffusion equation with spatially varying coefficients. We rigorously establish existence of stationary pulse solutions by blending techniques from geometric singular perturbation theory with bounds derived from the theory of exponential dichotomies. Moreover, the spectral stability of these solutions is determined, using similar methods. It is found that, due to the break-down of translation invariance, the presence of spatially varying terms can stabilize or destabilize a pulse solution. In particular, this leads to the discovery of a pitchfork bifurcation and existence of stationary multi-pulse solutions.
Energy minimizers to a MEMS model with an insulating layer are shown to converge in its reinforced limit to the minimizer of the limiting model as the thickness of the layer tends to zero. The proof relies on the identification of the $Gamma$-limit of the energy in this limit.
In this paper, the regularity results for the integro-differential operators of the fractional Laplacian type by Caffarelli and Silvestre cite{CS1} are extended to those for the integro-differential operators associated with symmetric, regularly varying kernels at zero. In particular, we obtain the uniform Harnack inequality and Holder estimate of viscosity solutions to the nonlinear integro-differential equations associated with the kernels $K_{sigma, beta}$ satisfying $$ K_{sigma,beta}(y)asymp frac{ 2-sigma}{|y|^{n+sigma}}left( logfrac{2}{|y|^2}right)^{beta(2-sigma)}quad mbox{near zero} $$ with respect to $sigmain(0,2)$ close to $2$ (for a given $betainmathbb R$), where the regularity estimates do not blow up as the order $ sigmain(0,2)$ tends to $2.$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا