Do you want to publish a course? Click here

Existence and dynamic properties of a parabolic nonlocal MEMS equation

137   0   0.0 ( 0 )
 Added by Kin Ming Hui
 Publication date 2010
  fields
and research's language is English
 Authors Kin Ming Hui




Ask ChatGPT about the research

Let $Omegasubsetmathbb{R}^n$ be a $C^2$ bounded domain and $chi>0$ be a constant. We will prove the existence of constants $lambda_Ngelambda_N^{ast}gelambda^{ast}(1+chiint_{Omega}frac{dx}{1-w_{ast}})^2$ for the nonlocal MEMS equation $-Delta v=lam/(1-v)^2(1+chiint_{Omega}1/(1-v)dx)^2$ in $Omega$, $v=0$ on $1Omega$, such that a solution exists for any $0lelambda<lambda_N^{ast}$ and no solution exists for any $lambda>lambda_N$ where $lambda^{ast}$ is the pull-in voltage and $w_{ast}$ is the limit of the minimal solution of $-Delta v=lam/(1-v)^2$ in $Omega$ with $v=0$ on $1Omega$ as $lambda earrow lambda^{ast}$. We will prove the existence, uniqueness and asymptotic behaviour of the global solution of the corresponding parabolic nonlocal MEMS equation under various boundedness conditions on $lambda$. We also obtain the quenching behaviour of the solution of the parabolic nonlocal MEMS equation when $lambda$ is large.

rate research

Read More

123 - Hiroki Yagisita 2008
We consider the nonlocal analogue of the Fisher-KPP equation. We do not assume that the Borel-measure is absolutely continuous with respect to the Lebesgue measure. We gives a sufficient condition for existence of traveling waves, and a necessary condition for existence of periodic traveling waves.
126 - Hiroki Yagisita 2016
We consider a nonlocal analogue of the Fisher-KPP equation. We do not assume that the Borel-measure for the convolution is absolutely continuous. In order to show the main result, we modify a recursive method for abstract monotone discrete dynamical systems by Weinberger. We note that the monotone semiflow generated by the equation does not have compactness with respect to the compact-open topology. At the end, we propose a discrete model that describes the measurement process.
119 - Hiroki Yagisita 2008
We consider traveling fronts to the nonlocal bistable equation. We do not assume that the Borel-measure is absolutely continuous with respect to the Lebesgue measure. We show that there is a traveling wave solution with monotone profile. In order to prove this result, we would develop a recursive method for abstract monotone dynamical systems and apply it to the equation.
Conditions for the existence and uniqueness of weak solutions for a class of nonlinear nonlocal degenerate parabolic equations are established. The asymptotic behaviour of the solutions as time tends to infinity are also studied. In particular, the finite time extinction and polynomial decay properties are proved.
In this paper, we consider the following non-local semi-linear parabolic equation with advection: for $1 le p<1+frac{2}{N}$, begin{equation*} begin{cases} u_t+v cdot abla u-Delta u=|u|^p-int_{mathbb T^N} |u|^p quad & textrm{on} quad mathbb T^N, u textrm{periodic} quad & textrm{on} quad partial mathbb T^N end{cases} end{equation*} with initial data $u_0$ defined on $mathbb T^N$. Here $v$ is an incompressible flow, and $mathbb T^N=[0, 1]^N$ is the $N$-torus with $N$ being the dimension. We first prove the local existence of mild solutions to the above equation for arbitrary data in $L^2$. We then study the global existence of the solutions under the following two scenarios: (1). when $v$ is a mixing flow; (2). when $v$ is a shear flow. More precisely, we show that under these assumptions, there exists a global solution to the above equation in the sense of $L^2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا