Do you want to publish a course? Click here

Pulse solutions for an extended Klausmeier model with spatially varying coefficients

93   0   0.0 ( 0 )
 Added by Robbin Bastiaansen
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by its application in ecology, we consider an extended Klausmeier model, a singularly perturbed reaction-advection-diffusion equation with spatially varying coefficients. We rigorously establish existence of stationary pulse solutions by blending techniques from geometric singular perturbation theory with bounds derived from the theory of exponential dichotomies. Moreover, the spectral stability of these solutions is determined, using similar methods. It is found that, due to the break-down of translation invariance, the presence of spatially varying terms can stabilize or destabilize a pulse solution. In particular, this leads to the discovery of a pitchfork bifurcation and existence of stationary multi-pulse solutions.



rate research

Read More

We investigate the stability of traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations with additive noise. Special attention is given to the effect of small noise on the classical deterministically stable traveling pulse. Our method is based on adapting the velocity of the traveling wave by solving a stochastic ordinary differential equation (SODE) and tracking perturbations to the wave meeting a stochastic partial differential equation (SPDE) coupled to an ordinary differential equation (ODE). This approach has been employed by Kruger and Stannat for scalar stochastic bistable reaction-diffusion equations such as the Nagumo equation. A main difference in our situation of an SPDE coupled to an ODE is that the linearization around the traveling wave is not self-adjoint anymore, so that fluctuations around the wave cannot be expected to be orthogonal in a corresponding inner product. We demonstrate that this problem can be overcome by making use of Riesz instead of orthogonal spectral projections. We expect that our approach can also be applied to traveling waves and other patterns in more general situations such as systems of SPDEs that are not self-adjoint. This provides a major generalization as these systems are prevalent in many applications.
129 - Jongkeun Choi , Minsuk Yang 2017
We establish the existence and the pointwise bound of the fundamental solution for the stationary Stokes system with measurable coefficients in the whole space $mathbb{R}^d$, $d ge 3$, under the assumption that weak solutions of the system are locally Holder continuous. We also discuss the existence and the pointwise bound of the Green function for the Stokes system with measurable coefficients on $Omega$, where $Omega$ is an unbounded domain such that the divergence equation is solvable. Such a domain includes, for example, half space and an exterior domain.
This paper focuses on a model for opinion dynamics, where the influence weights of agents evolve in time. We formulate a control problem of consensus type, in which the objective is to drive all agents to a final target point under suitable control constraints. Controllability is discussed for the corresponding problem with and without constraints on the total mass of the system, and control strategies are designed with the steepest descent approach. The mean-field limit is described both for the opinion dynamics and the control problem. Numerical simulations illustrate the control strategies for the finite-dimensional system.
We use geometric singular perturbation techniques combined with an action functional approach to study traveling pulse solutions in a three-component FitzHugh--Nagumo model. First, we derive the profile of traveling $1$-pulse solutions with undetermined width and propagating speed. Next, we compute the associated action functional for this profile from which we derive the conditions for existence and a saddle-node bifurcation as the zeros of the action functional and its derivatives. We obtain the same conditions by using a different analytical approach that exploits the singular limit of the problem. We also apply this methodology of the action functional to the problem for traveling $2$-pulse solutions and derive the explicit conditions for existence and a saddle-node bifurcation. From these we deduce a necessary condition for the existence of traveling $2$-pulse solutions. We end this article with a discussion related to Hopf bifurcations near the saddle-node bifurcation.
An epidemic model with distributed time delay is derived to describe the dynamics of infectious diseases with varying immunity. It is shown that solutions are always positive, and the model has at most two steady states: disease-free and endemic. It is proved that the disease-free equilibrium is locally and globally asymptotically stable. When an endemic equilibrium exists, it is possible to analytically prove its local and global stability using Lyapunov functionals. Bifurcation analysis is performed using DDE-BIFTOOL and traceDDE to investigate different dynamical regimes in the model using numerical continuation for different values of system parameters and different integral kernels.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا