Do you want to publish a course? Click here

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

68   0   0.0 ( 0 )
 Added by Awni Hannun
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We develop an algorithm which exceeds the performance of board certified cardiologists in detecting a wide range of heart arrhythmias from electrocardiograms recorded with a single-lead wearable monitor. We build a dataset with more than 500 times the number of unique patients than previously studied corpora. On this dataset, we train a 34-layer convolutional neural network which maps a sequence of ECG samples to a sequence of rhythm classes. Committees of board-certified cardiologists annotate a gold standard test set on which we compare the performance of our model to that of 6 other individual cardiologists. We exceed the average cardiologist performance in both recall (sensitivity) and precision (positive predictive value).



rate research

Read More

122 - Ziyu Liu , Xiang Zhang 2021
Electrocardiography (ECG) signal is a highly applied measurement for individual heart condition, and much effort have been endeavored towards automatic heart arrhythmia diagnosis based on machine learning. However, traditional machine learning models require large investment of time and effort for raw data preprocessing and feature extraction, as well as challenged by poor classification performance. Here, we propose a novel deep learning model, named Attention-Based Convolutional Neural Networks (ABCNN) that taking advantage of CNN and multi-head attention, to directly work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection. To evaluate the proposed approach, we conduct extensive experiments over a benchmark ECG dataset. Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types. We also provide convergence analysis of ABCNN and intuitively show the meaningfulness of extracted representation through visualization. The experimental results show that the proposed ABCNN outperforms the widely used baselines, which puts one step closer to intelligent heart disease diagnosis system.
Pedestrians in videos have a wide range of appearances such as body poses, occlusions, and complex backgrounds, and there exists the proposal shift problem in pedestrian detection that causes the loss of body parts such as head and legs. To address it, we propose part-level convolutional neural networks (CNN) for pedestrian detection using saliency and boundary box alignment in this paper. The proposed network consists of two sub-networks: detection and alignment. We use saliency in the detection sub-network to remove false positives such as lamp posts and trees. We adopt bounding box alignment on detection proposals in the alignment sub-network to address the proposal shift problem. First, we combine FCN and CAM to extract deep features for pedestrian detection. Then, we perform part-level CNN to recall the lost body parts. Experimental results on various datasets demonstrate that the proposed method remarkably improves accuracy in pedestrian detection and outperforms existing state-of-the-arts in terms of log average miss rate at false position per image (FPPI).
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intensively studied for accurate detection of prostate cancer. With deep convolutional neural networks (CNNs) significant success in computer vision tasks such as object detection and segmentation, different CNNs architectures are increasingly investigated in medical imaging research community as promising solutions for designing more accurate CAD tools for cancer detection. In this work, we developed and implemented an automated CNNs-based pipeline for detection of clinically significant prostate cancer (PCa) for a given axial DWI image and for each patient. DWI images of 427 patients were used as the dataset, which contained 175 patients with PCa and 252 healthy patients. To measure the performance of the proposed pipeline, a test set of 108 (out of 427) patients were set aside and not used in the training phase. The proposed pipeline achieved area under the receiver operating characteristic curve (AUC) of 0.87 (95% Confidence Interval (CI): 0.84-0.90) and 0.84 (95% CI: 0.76-0.91) at slice level and patient level, respectively.
Roof falls due to geological conditions are major safety hazards in mining and tunneling industries, causing lost work times, injuries, and fatalities. Several large-opening limestone mines in the Eastern and Midwestern United States have roof fall problems caused by high horizontal stresses. The typical hazard management approach for this type of roof fall hazard relies heavily on visual inspections and expert knowledge. In this study, we propose an artificial intelligence (AI) based system for the detection roof fall hazards caused by high horizontal stresses. We use images depicting hazardous and non-hazardous roof conditions to develop a convolutional neural network for autonomous detection of hazardous roof conditions. To compensate for limited input data, we utilize a transfer learning approach. In transfer learning, an already-trained network is used as a starting point for classification in a similar domain. Results confirm that this approach works well for classifying roof conditions as hazardous or safe, achieving a statistical accuracy of 86%. However, accuracy alone is not enough to ensure a reliable hazard management system. System constraints and reliability are improved when the features being used by the network are understood. Therefore, we used a deep learning interpretation technique called integrated gradients to identify the important geologic features in each image for prediction. The analysis of integrated gradients shows that the system mimics expert judgment on roof fall hazard detection. The system developed in this paper demonstrates the potential of deep learning in geological hazard management to complement human experts, and likely to become an essential part of autonomous tunneling operations in those cases where hazard identification heavily depends on expert knowledge.
Most existing 3D CNNs for video representation learning are clip-based methods, and thus do not consider video-level temporal evolution of spatio-temporal features. In this paper, we propose Video-level 4D Convolutional Neural Networks, referred as V4D, to model the evolution of long-range spatio-temporal representation with 4D convolutions, and at the same time, to preserve strong 3D spatio-temporal representation with residual connections. Specifically, we design a new 4D residual block able to capture inter-clip interactions, which could enhance the representation power of the original clip-level 3D CNNs. The 4D residual blocks can be easily integrated into the existing 3D CNNs to perform long-range modeling hierarchically. We further introduce the training and inference methods for the proposed V4D. Extensive experiments are conducted on three video recognition benchmarks, where V4D achieves excellent results, surpassing recent 3D CNNs by a large margin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا