Do you want to publish a course? Click here

Measuring Reionization, Neutrino Mass, and Cosmic Inflation with BFORE

64   0   0.0 ( 0 )
 Added by Sean Bryan
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

BFORE is a NASA high-altitude ultra-long-duration balloon mission proposed to measure the cosmic microwave background (CMB) across half the sky during a 28-day mid-latitude flight launched from Wanaka, New Zealand. With the unique access to large angular scales and high frequencies provided by the balloon platform, BFORE will significantly improve measurements of the optical depth to reionization tau, breaking parameter degeneracies needed for a measurement of neutrino mass with the CMB. The large angular scale data will enable BFORE to hunt for the large-scale gravitational wave B-mode signal, as well as the degree-scale signal, each at the r~0.01 level. The balloon platform allows BFORE to map Galactic dust foregrounds at frequencies where they dominate, in order to robustly separate them from CMB signals measured by BFORE, in addition to complementing data from ground-based telescopes. The combination of frequencies will also lead to velocity measurements for thousands of galaxy clusters, as well as probing how star-forming galaxies populate dark matter halos. The mission will be the first near-space use of TES multichroic detectors (150/217 GHz and 280/353 GHz bands) using highly-multiplexed mSQUID microwave readout, raising the technical readiness level of both technologies.



rate research

Read More

BFORE is a high-altitude ultra-long-duration balloon mission to map the cosmic microwave background (CMB). During a 28-day mid-latitude flight launched from Wanaka, New Zealand, the instrument will map half the sky to improve measurements of the optical depth to reionization tau. This will break parameter degeneracies needed to detect neutrino mass. BFORE will also hunt for the gravitational wave B-mode signal, and map Galactic dust foregrounds. The mission will be the first near-space use of TES/mSQUID multichroic detectors (150/217 GHz and 280/353 GHz bands) with low-power readout electronics.
The exceptional sensitivity of the SKA will allow observations of the Cosmic Dawn and Epoch of Reionization (CD/EoR) in unprecedented detail, both spectrally and spatially. This wealth of information is buried under Galactic and extragalactic foregrounds, which must be removed accurately and precisely in order to reveal the cosmological signal. This problem has been addressed already for the previous generation of radio telescopes, but the application to SKA is different in many aspects. In this chapter we summarise the contributions to the field of foreground removal in the context of high redshift and high sensitivity 21-cm measurements. We use a state-of-the-art simulation of the SKA Phase 1 observations complete with cosmological signal, foregrounds and frequency-dependent instrumental effects to test both parametric and non-parametric foreground removal methods. We compare the recovered cosmological signal using several different statistics and explore one of the most exciting possibilities with the SKA --- imaging of the ionized bubbles. We find that with current methods it is possible to remove the foregrounds with great accuracy and to get impressive power spectra and images of the cosmological signal. The frequency-dependent PSF of the instrument complicates this recovery, so we resort to splitting the observation bandwidth into smaller segments, each of a common resolution. If the foregrounds are allowed a random variation from the smooth power law along the line of sight, methods exploiting the smoothness of foregrounds or a parametrization of their behaviour are challenged much more than non-parametric ones. However, we show that correction techniques can be implemented to restore the performances of parametric approaches, as long as the first-order approximation of a power law stands.
The Probe of Inflation and Cosmic Origins (PICO) is an imaging polarimeter that will scan the sky for 5 years in 21 frequency bands spread between 21 and 799 GHz. It will produce full-sky surveys of intensity and polarization with a final combined-map noise level of 0.87 $mu$K arcmin for the required specifications, equivalent to 3300 Planck missions, and with our current best-estimate would have a noise level of 0.61 $mu$K arcmin (6400 Planck missions). PICO will either determine the energy scale of inflation by detecting the tensor to scalar ratio at a level $r=5times 10^{-4}~(5sigma)$, or will rule out with more than $5sigma$ all inflation models for which the characteristic scale in the potential is the Planck scale. With LSSTs data it could rule out all models of slow-roll inflation. PICO will detect the sum of neutrino masses at $>4sigma$, constrain the effective number of light particle species with $Delta N_{rm eff}<0.06~(2sigma)$, and elucidate processes affecting the evolution of cosmic structures by measuring the optical depth to reionization with errors limited by cosmic variance and by constraining the evolution of the amplitude of linear fluctuations $sigma_{8}(z)$ with sub-percent accuracy. Cross-correlating PICOs map of the thermal Sunyaev-Zeldovich effect with LSSTs gold sample of galaxies will precisely trace the evolution of thermal pressure with $z$. PICOs maps of the Milky Way will be used to determine the make up of galactic dust and the role of magnetic fields in star formation efficiency. With 21 full sky legacy maps in intensity and polarization, which cannot be obtained in any other way, the mission will enrich many areas of astrophysics. PICO is the only single-platform instrument with the combination of sensitivity, angular resolution, frequency bands, and control of systematic effects that can deliver this compelling, timely, and broad science.
73 - S. Hanany , M. Alvarez , E. Artis 2019
The Probe of Inflation and Cosmic Origins (PICO) is a proposed probe-scale space mission consisting of an imaging polarimeter operating in frequency bands between 20 and 800 GHz. We describe the science achievable by PICO, which has sensitivity equivalent to more than 3300 Planck missions, the technical implementation, the schedule and cost.
The B-mode Foreground Experiment (BFORE) is a proposed NASA balloon project designed to make optimal use of the sub-orbital platform by concentrating on three dust foreground bands (270, 350, and 600 GHz) that complement ground-based cosmic microwave background (CMB) programs. BFORE will survey ~1/4 of the sky with 1.7 - 3.7 arcminute resolution, enabling precise characterization of the Galactic dust that now limits constraints on inflation from CMB B-mode polarization measurements. In addition, BFOREs combination of frequency coverage, large survey area, and angular resolution enables science far beyond the critical goal of measuring foregrounds. BFORE will constrain the velocities of thousands of galaxy clusters, provide a new window on the cosmic infrared background, and probe magnetic fields in the interstellar medium. We review the BFORE science case, timeline, and instrument design, which is based on a compact off-axis telescope coupled to >10,000 superconducting detectors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا