No Arabic abstract
The exceptional sensitivity of the SKA will allow observations of the Cosmic Dawn and Epoch of Reionization (CD/EoR) in unprecedented detail, both spectrally and spatially. This wealth of information is buried under Galactic and extragalactic foregrounds, which must be removed accurately and precisely in order to reveal the cosmological signal. This problem has been addressed already for the previous generation of radio telescopes, but the application to SKA is different in many aspects. In this chapter we summarise the contributions to the field of foreground removal in the context of high redshift and high sensitivity 21-cm measurements. We use a state-of-the-art simulation of the SKA Phase 1 observations complete with cosmological signal, foregrounds and frequency-dependent instrumental effects to test both parametric and non-parametric foreground removal methods. We compare the recovered cosmological signal using several different statistics and explore one of the most exciting possibilities with the SKA --- imaging of the ionized bubbles. We find that with current methods it is possible to remove the foregrounds with great accuracy and to get impressive power spectra and images of the cosmological signal. The frequency-dependent PSF of the instrument complicates this recovery, so we resort to splitting the observation bandwidth into smaller segments, each of a common resolution. If the foregrounds are allowed a random variation from the smooth power law along the line of sight, methods exploiting the smoothness of foregrounds or a parametrization of their behaviour are challenged much more than non-parametric ones. However, we show that correction techniques can be implemented to restore the performances of parametric approaches, as long as the first-order approximation of a power law stands.
We provide an overview of 21cm tomography of the Cosmic Dawn and Epoch of Reionization as possible with SKA-Low. We show why tomography is essential for studying CD/EoR and present the scales which can be imaged at different frequencies for the different phases of SKA- Low. Next we discuss the different ways in which tomographic data can be analyzed. We end with an overview of science questions which can only be answered by tomography, ranging from the characterization of individual objects to understanding the global processes shaping the Universe during the CD/EoR
In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing a foreground model which includes sources in both the main field-of-view and the first sidelobes reduces the contamination in high k_parallel modes by several percent relative to a model which only includes sources in the main field-of-view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. While small, a percent-level amount of foreground power is in itself more than enough to prevent recovery of any EoR signal from these modes. This result demonstrates that foreground subtraction for redshifted 21 cm experiments is truly a wide-field problem, and algorithms and simulations must extend beyond the main instrument field-of-view to potentially recover the full 21 cm power spectrum.
Concerted effort is currently ongoing to open up the Epoch of Reionization (EoR) ($zsim$15-6) for studies with IR and radio telescopes. Whereas IR detections have been made of sources (Lyman-$alpha$ emitters, quasars and drop-outs) in this redshift regime in relatively small fields of view, no direct detection of neutral hydrogen, via the redshifted 21-cm line, has yet been established. Such a direct detection is expected in the coming years, with ongoing surveys, and could open up the entire universe from $zsim$6-200 for astrophysical and cosmological studies, opening not only the EoR, but also its preceding Cosmic Dawn ($zsim$30-15) and possibly even the later phases of the Dark Ages ($zsim$200-30). All currently ongoing experiments attempt statistical detections of the 21-cm signal during the EoR, with limited signal-to-noise. Direct imaging, except maybe on the largest (degree) scales at lower redshifts, as well as higher redshifts will remain out of reach. The Square Kilometre Array(SKA) will revolutionize the field, allowing direct imaging of neutral hydrogen from scales of arc-minutes to degrees over most of the redshift range $zsim$6-28 with SKA1-LOW, and possibly even higher redshifts with the SKA2-LOW. In this SKA will be unique, and in parallel provide enormous potential of synergy with other upcoming facilities (e.g. JWST). In this chapter we summarize the physics of 21-cm emission, the different phases the universe is thought to go through, and the observables that the SKA can probe, referring where needed to detailed chapters in this volume (Abridged).
The global 21 cm signal from Cosmic Dawn (CD) and the Epoch of Reionization (EoR), at redshifts $z sim 6-30$, probes the nature of first sources of radiation as well as physics of the Inter-Galactic Medium (IGM). Given that the signal is predicted to be extremely weak, of wide fractional bandwidth, and lies in a frequency range that is dominated by Galactic and Extragalactic foregrounds as well as Radio Frequency Interference, detection of the signal is a daunting task. Critical to the experiment is the manner in which the sky signal is represented through the instrument. It is of utmost importance to design a system whose spectral bandpass and additive spurious can be well calibrated and any calibration residual does not mimic the signal. SARAS is an ongoing experiment that aims to detect the global 21 cm signal. Here we present the design philosophy of the SARAS 2 system and discuss its performance and limitations based on laboratory and field measurements. Laboratory tests with the antenna replaced with a variety of terminations, including a network model for the antenna impedance, show that the gain calibration and modeling of internal additives leave no residuals with Fourier amplitudes exceeding 2~mK, or residual Gaussians of 25 MHz width with amplitudes exceeding 2~mK. Thus, even accounting for reflection and radiation efficiency losses in the antenna, the SARAS~2 system is capable of detection of complex 21-cm profiles at the level predicted by currently favoured models for thermal baryon evolution.
21 cm Epoch of Reionization observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power spectrum analysis including all of the major components of a real data processing pipeline: models of astrophysical foregrounds and EoR signal, frequency-dependent instrument effects, sky-based antenna calibration, and the full PS analysis. This study reveals that traditional sky-based per-frequency antenna calibration can only be implemented in EoR measurement analyses if the calibration model is unrealistically accurate. For reasonable levels of catalog completeness, the calibration introduces contamination in otherwise foreground-free power spectrum modes, precluding a PS measurement. We explore the origin of this contamination and potential mitigation techniques. We show that there is a strong joint constraint on the precision of the calibration catalog and the inherent spectral smoothness of antennae, and that this has significant implications for the instrumental design of the SKA and other future EoR observatories.