Do you want to publish a course? Click here

BFORE: The B-mode Foreground Experiment

77   0   0.0 ( 0 )
 Added by Michael Niemack
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The B-mode Foreground Experiment (BFORE) is a proposed NASA balloon project designed to make optimal use of the sub-orbital platform by concentrating on three dust foreground bands (270, 350, and 600 GHz) that complement ground-based cosmic microwave background (CMB) programs. BFORE will survey ~1/4 of the sky with 1.7 - 3.7 arcminute resolution, enabling precise characterization of the Galactic dust that now limits constraints on inflation from CMB B-mode polarization measurements. In addition, BFOREs combination of frequency coverage, large survey area, and angular resolution enables science far beyond the critical goal of measuring foregrounds. BFORE will constrain the velocities of thousands of galaxy clusters, provide a new window on the cosmic infrared background, and probe magnetic fields in the interstellar medium. We review the BFORE science case, timeline, and instrument design, which is based on a compact off-axis telescope coupled to >10,000 superconducting detectors.



rate research

Read More

We describe the Cosmic Microwave Background (CMB) polarization experiment called Polarbear. This experiment will use the dedicated Huan Tran Telescope equipped with a powerful 1,200-bolometer array receiver to map the CMB polarization with unprecedented accuracy. We summarize the experiment, its goals, and current status.
The E and B Experiment (EBEX) is a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation and to characterize the polarization of galactic dust. EBEX was launched December 29, 2012 and circumnavigated Antarctica observing $sim$6,000 square degrees of sky during 11 days at three frequency bands centered around 150, 250 and 410 GHz. EBEX was the first experiment to operate a kilo-pixel array of transition-edge sensor bolometers and a continuously rotating achromatic half-wave plate aboard a balloon platform. It also pioneered the use of detector readout based on digital frequency domain multiplexing. We describe the temperature calibration of the experiment. The gain response of the experiment is calibrated using a two-step iterative process. We use signals measured on passes across the Galactic plane to convert from readout-system counts to power. The effective smoothing scale of the EBEX optics and the star camera-to-detector offset angles are determined through c{hi}2 minimization using the compact HII region RCW 38. This two-step process is initially performed with parameters measured before the EBEX 2013 flight and then repeated until the calibration factor and parameters converge.
BFORE is a NASA high-altitude ultra-long-duration balloon mission proposed to measure the cosmic microwave background (CMB) across half the sky during a 28-day mid-latitude flight launched from Wanaka, New Zealand. With the unique access to large angular scales and high frequencies provided by the balloon platform, BFORE will significantly improve measurements of the optical depth to reionization tau, breaking parameter degeneracies needed for a measurement of neutrino mass with the CMB. The large angular scale data will enable BFORE to hunt for the large-scale gravitational wave B-mode signal, as well as the degree-scale signal, each at the r~0.01 level. The balloon platform allows BFORE to map Galactic dust foregrounds at frequencies where they dominate, in order to robustly separate them from CMB signals measured by BFORE, in addition to complementing data from ground-based telescopes. The combination of frequencies will also lead to velocity measurements for thousands of galaxy clusters, as well as probing how star-forming galaxies populate dark matter halos. The mission will be the first near-space use of TES multichroic detectors (150/217 GHz and 280/353 GHz bands) using highly-multiplexed mSQUID microwave readout, raising the technical readiness level of both technologies.
The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the tenth public data release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R~22,500 300-fiber spectrograph covering 1.514--1.696 microns. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included.DR10 also roughly doubles the number of BOSS spectra over those included in the ninth data release. DR10 includes a total of 1,507,954 BOSS spectra, comprising 927,844 galaxy spectra; 182,009 quasar spectra; and 159,327 stellar spectra, selected over 6373.2 square degrees.
The Atacama B-mode Search (ABS) is an experiment designed to measure cosmic microwave background (CMB) polarization at large angular scales ($ell>40$). It operated from the ACT site at 5190~m elevation in northern Chile at 145 GHz with a net sensitivity (NEQ) of 41 $mu$K$sqrt{rm s}$. It employed an ambient-temperature sapphire half-wave plate rotating at 2.55 Hz to modulate the incident polarization signal and reduce systematic effects. We report here on the analysis of data from a 2400 deg$^2$ patch of sky centered at declination $-42^circ$ and right ascension $25^circ$. We perform a blind analysis. After unblinding, we find agreement with the Planck TE and EE measurements on the same region of sky. We marginally detect polarized dust emission and give an upper limit on the tensor-to-scalar ratio of $r<2.3$ (95% cl) with the equivalent of 100 on-sky days of observation. We also present a new measurement of the polarization of Tau A and introduce new methods associated with HWP-based observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا