Do you want to publish a course? Click here

Upsilon-like concordance invariants from sl(n) knot cohomology

75   0   0.0 ( 0 )
 Added by Lukas Lewark
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We construct smooth concordance invariants of knots which take the form of piecewise linear maps from [0,1] to R, one for each n greater than or equal to 2. These invariants arise from sl(n) knot cohomology. We verify some properties which are analogous to those of the invariant Upsilon (which arises from knot Floer homology), and some which differ. We make some explicit computations and give some topological applications. Further to this, we define a concordance invariant from equivariant sl(n) knot cohomology which subsumes many known concordance invariants arising from quantum knot cohomologies.



rate research

Read More

94 - J. Scott Carter 2003
Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Gra~na. We specialize that theory to the case when there is a group action on the coefficients. First, quandle modules are used to generalize Burau representations and Alexander modules for classical knots. Second, 2-cocycles valued in non-abelian groups are used in a way similar to Hopf algebra invariants of classical knots. These invariants are shown to be of quantum type. Third, cocycles with group actions on coefficient groups are used to define quandle cocycle invariants for both classical knots and knotted surfaces. Concrete computational methods are provided and used to prove non-invertibility for a large family of knotted surfaces. In the classical case, the invariant can detect the chirality of 3-colorable knots in a number of cases.
We introduce shadow structures for singular knot theory. Precisely, we define emph{two} invariants of singular knots and links. First, we introduce a notion of action of a singquandle on a set to define a shadow counting invariant of singular links which generalize the classical shadow colorings of knots by quandles. We then define a shadow polynomial invariant for shadow structures. Lastly, we enhance the shadow counting invariant by combining both the shadow counting invariant and the shadow polynomial invariant. Explicit examples of computations are given.
We modify the construction of knot Floer homology to produce a one-parameter family of homologies for knots in the three-sphere. These invariants can be used to give homomorphisms from the smooth concordance group to the integers, giving bounds on the four-ball genus and the concordance genus of knots. We give some applications of these homomorphisms.
140 - Emanuele Zappala 2021
The ribbon cocycle invariant is defined by means of a partition function using ternary cohomology of self-distributive structures (TSD) and colorings of ribbon diagrams of a framed link, following the same paradigm introduced by Carter, Jelsovsky, Kamada, Langfor and Saito in Transactions of the American Mathematical Society 2003;355(10):3947-89, for the quandle cocycle invariant. In this article we show that the ribbon cocycle invariant is a quantum invariant. We do so by constructing a ribbon category from a TSD set whose twisting and braiding morphisms entail a given TSD $2$-cocycle. Then we show that the quantum invariant naturally associated to this braided category coincides with the cocycle invariant. We generalize this construction to symmetric monoidal categories and provide classes of examples obtained from Hopf monoids and Lie algebras. We further introduce examples from Hopf-Frobenius algebras, objects studied in quantum computing.
299 - J.Scott Carter 2002
A homology theory is developed for set-theoretic Yang-Baxter equations, and knot invariants are constructed by generalized colorings by biquandles and Yang-Baxter cocycles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا