Do you want to publish a course? Click here

Dense superconducting phases of copper-bismuth at high pressure

117   0   0.0 ( 0 )
 Added by Maximilian Amsler
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although copper and bismuth do not form any compounds at ambient conditions, two intermetallics, CuBi and Cu$_{11}$Bi$_7$, were recently synthesized at high pressures. Here we report on the discovery of additional copper-bismuth phases at elevated pressures with high-densities from ab initio calculations. In particular, a Cu$_2$Bi compound is found to be thermodynamically stable at pressures above 59 GPa, crystallizing in the cubic Laves structure. In strong contrast to Cu$_{11}$Bi$_7$ and CuBi, cubic Cu$_2$Bi does not exhibit any voids or channels. Since the bismuth lone pairs in cubic Cu$_2$Bi are stereochemically inactive, the constituent elements can be closely packed and a high density of 10.52 g/cm$^{3}$ at 0 GPa is achieved. The moderate electron-phonon coupling of $lambda=0.68$ leads to a superconducting temperature of 2 K, which exceeds the values observed both in Cu$_{11}$Bi$_7$and CuBi, as well as in elemental Cu and Bi .



rate research

Read More

We report on the synthesis of superconducting single crystals of FeSe, and their characterization by X-ray diffraction, magnetization and resistivity. We have performed ac susceptibility measurements under high pressure in a hydrostatic liquid argon medium up to 14 GPa and we find that TC increases up to 33-36 K in all samples, but with slightly different pressure dependences on different samples. Above 12 GPa no traces of superconductivity are found in any sample. We have also performed a room temperature high pressure X-ray diffraction study up to 12 GPa on a powder sample, and we find that between 8.5 GPa and 12 GPa, the tetragonal PbO structure undergoes a structural transition to a hexagonal structure. This transition results in a volume decrease of about 16%, and is accompanied by the appearance of an intermediate, probably orthorhombic phase.
The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur-hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component $ab,initio$ structural search in the immiscible Fe--Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above $approx36$ GPa, FeBi$_2$ and FeBi$_3$. According to our predictions, FeBi$_2$ is a metal at the border of magnetism with a conventional electron-phonon mediated superconducting transition temperature of $T_{rm c}=1.3$ K at 40 GPa. In analogy to other iron-based materials, FeBi$_2$ is possibly a non-conventional superconductor with a real $T_{rm c}$ significantly exceeding the values obtained within Bardeen-Cooper-Schrieffer (BCS) theory.
Pressure-induced transitions from ordered intermetallic phases to substitutional alloys to semi-ordered phases were studied in a series of bismuth tellurides. Using angle-dispersive x-ray diffraction, the compounds Bi4Te5, BiTe, and Bi2Te were observed to form alloys with the disordered body-centered cubic (bcc) crystal structure upon compression to above 14--19 GPa at room temperature. The BiTe and Bi2Te alloys and the previously discovered high-pressure alloys of Bi2Te3 and Bi4Te3 were all found to show atomic ordering after gentle annealing at very moderate temperatures of ~100{deg}C. Upon annealing, BiTe transforms from the bcc to the B2 (CsCl) crystal structure type, and the other phases adopt semi-disordered variants thereof, featuring substitutional disorder on one of the two crystallographic sites. The transition pressures and atomic volumes of the alloy phases show systematic variations across the Bi_mTe_n series including the end members Bi and Te. First-principles calculations were performed to characterize the electronic structure and chemical bonding properties of B2-type BiTe and to identify the driving forces of the ordering transition. The calculated Fermi surface of B2-type BiTe has an intricate structure and is predicted to undergo three topological changes between 20 and 60 GPa.
We reexamine the novel phase diagrams of antiferromagnetism (AFM) and high-Tc$ superconductivity (HTSC) for a disorder-free CuO$_2$ plane based on an evaluation of local hole density ($p$) by site-selective Cu-NMR studies on multilayered copper oxides. Multilayered systems provide us with the opportunity to research the characteristics of the disorder-free CuO$_2$ plane. The site-selective NMR is the best and the only tool used to extract layer-dependent characteristics. Consequently, we have concluded that the uniform mixing of AFM and SC is a general property inherent to a single CuO$_2$ plane in an underdoped regime of HTSC. The $T$=0 phase diagram of AFM constructed here is in quantitative agreement with the theories in a strong correlation regime which is unchanged even with mobile holes. This {it Mott physics} plays a vital role for mediating the Cooper pairs to make $T_c$ of HTSC very high. By contrast, we address from extensive NMR studies on electron-doped iron-oxypnictides La1111 compounds that the increase in $T_c$ is not due to the development of AFM spin fluctuations, but because the structural parameters, such as the bond angle $alpha$ of the FeAs$_4$ tetrahedron and the a-axis length, approach each optimum value. Based on these results, we propose that a stronger correlation in HTSC than in FeAs-based superconductors may make $T_c$ higher significantly.
We have measured the temperature dependence of resistivity in single-crystalline CeNiGe$_{3}$ under hydrostatic pressure in order to establish the characteristic pressure-temperature phase diagram. The transition temperature to AFM-I phase $T_{rm N1}$ = 5.5 K at ambient pressure initially increases with increasing pressure and has a maximum at $sim$ 3.0 GPa. Above 2.3 GPa, a clear zero-resistivity is observed (SC-I phase) and this superconducting (SC) state coexists with AFM-I phase. The SC-I phase suddenly disappears at 3.7 GPa simultaneously with the appearance of an additional kink anomaly corresponding to the phase transition to AFM-II phase. The AFM-II phase is continuously suppressed with further increasing pressure and disappears at $sim$ 6.5 GPa. In the narrow range near the critical pressure, an SC phase reappears (SC-II phase). A large initial slope of upper critical field $mu_0H_{rm c2}$ and non-Fermi liquid behavior indicate that the SC-II phase is mediated by antiferromagnetic fluctuations. On the other hand, the robust coexistence of the SC-I phase and AFM-I phase is unusual on the contrary to superconductivity near a quantum critical point on most of heavy-fermion compounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا