No Arabic abstract
Although copper and bismuth do not form any compounds at ambient conditions, two intermetallics, CuBi and Cu$_{11}$Bi$_7$, were recently synthesized at high pressures. Here we report on the discovery of additional copper-bismuth phases at elevated pressures with high-densities from ab initio calculations. In particular, a Cu$_2$Bi compound is found to be thermodynamically stable at pressures above 59 GPa, crystallizing in the cubic Laves structure. In strong contrast to Cu$_{11}$Bi$_7$ and CuBi, cubic Cu$_2$Bi does not exhibit any voids or channels. Since the bismuth lone pairs in cubic Cu$_2$Bi are stereochemically inactive, the constituent elements can be closely packed and a high density of 10.52 g/cm$^{3}$ at 0 GPa is achieved. The moderate electron-phonon coupling of $lambda=0.68$ leads to a superconducting temperature of 2 K, which exceeds the values observed both in Cu$_{11}$Bi$_7$and CuBi, as well as in elemental Cu and Bi .
We report on the synthesis of superconducting single crystals of FeSe, and their characterization by X-ray diffraction, magnetization and resistivity. We have performed ac susceptibility measurements under high pressure in a hydrostatic liquid argon medium up to 14 GPa and we find that TC increases up to 33-36 K in all samples, but with slightly different pressure dependences on different samples. Above 12 GPa no traces of superconductivity are found in any sample. We have also performed a room temperature high pressure X-ray diffraction study up to 12 GPa on a powder sample, and we find that between 8.5 GPa and 12 GPa, the tetragonal PbO structure undergoes a structural transition to a hexagonal structure. This transition results in a volume decrease of about 16%, and is accompanied by the appearance of an intermediate, probably orthorhombic phase.
The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur-hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component $ab,initio$ structural search in the immiscible Fe--Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above $approx36$ GPa, FeBi$_2$ and FeBi$_3$. According to our predictions, FeBi$_2$ is a metal at the border of magnetism with a conventional electron-phonon mediated superconducting transition temperature of $T_{rm c}=1.3$ K at 40 GPa. In analogy to other iron-based materials, FeBi$_2$ is possibly a non-conventional superconductor with a real $T_{rm c}$ significantly exceeding the values obtained within Bardeen-Cooper-Schrieffer (BCS) theory.
Pressure-induced transitions from ordered intermetallic phases to substitutional alloys to semi-ordered phases were studied in a series of bismuth tellurides. Using angle-dispersive x-ray diffraction, the compounds Bi4Te5, BiTe, and Bi2Te were observed to form alloys with the disordered body-centered cubic (bcc) crystal structure upon compression to above 14--19 GPa at room temperature. The BiTe and Bi2Te alloys and the previously discovered high-pressure alloys of Bi2Te3 and Bi4Te3 were all found to show atomic ordering after gentle annealing at very moderate temperatures of ~100{deg}C. Upon annealing, BiTe transforms from the bcc to the B2 (CsCl) crystal structure type, and the other phases adopt semi-disordered variants thereof, featuring substitutional disorder on one of the two crystallographic sites. The transition pressures and atomic volumes of the alloy phases show systematic variations across the Bi_mTe_n series including the end members Bi and Te. First-principles calculations were performed to characterize the electronic structure and chemical bonding properties of B2-type BiTe and to identify the driving forces of the ordering transition. The calculated Fermi surface of B2-type BiTe has an intricate structure and is predicted to undergo three topological changes between 20 and 60 GPa.
We reexamine the novel phase diagrams of antiferromagnetism (AFM) and high-Tc$ superconductivity (HTSC) for a disorder-free CuO$_2$ plane based on an evaluation of local hole density ($p$) by site-selective Cu-NMR studies on multilayered copper oxides. Multilayered systems provide us with the opportunity to research the characteristics of the disorder-free CuO$_2$ plane. The site-selective NMR is the best and the only tool used to extract layer-dependent characteristics. Consequently, we have concluded that the uniform mixing of AFM and SC is a general property inherent to a single CuO$_2$ plane in an underdoped regime of HTSC. The $T$=0 phase diagram of AFM constructed here is in quantitative agreement with the theories in a strong correlation regime which is unchanged even with mobile holes. This {it Mott physics} plays a vital role for mediating the Cooper pairs to make $T_c$ of HTSC very high. By contrast, we address from extensive NMR studies on electron-doped iron-oxypnictides La1111 compounds that the increase in $T_c$ is not due to the development of AFM spin fluctuations, but because the structural parameters, such as the bond angle $alpha$ of the FeAs$_4$ tetrahedron and the a-axis length, approach each optimum value. Based on these results, we propose that a stronger correlation in HTSC than in FeAs-based superconductors may make $T_c$ higher significantly.
We have measured the temperature dependence of resistivity in single-crystalline CeNiGe$_{3}$ under hydrostatic pressure in order to establish the characteristic pressure-temperature phase diagram. The transition temperature to AFM-I phase $T_{rm N1}$ = 5.5 K at ambient pressure initially increases with increasing pressure and has a maximum at $sim$ 3.0 GPa. Above 2.3 GPa, a clear zero-resistivity is observed (SC-I phase) and this superconducting (SC) state coexists with AFM-I phase. The SC-I phase suddenly disappears at 3.7 GPa simultaneously with the appearance of an additional kink anomaly corresponding to the phase transition to AFM-II phase. The AFM-II phase is continuously suppressed with further increasing pressure and disappears at $sim$ 6.5 GPa. In the narrow range near the critical pressure, an SC phase reappears (SC-II phase). A large initial slope of upper critical field $mu_0H_{rm c2}$ and non-Fermi liquid behavior indicate that the SC-II phase is mediated by antiferromagnetic fluctuations. On the other hand, the robust coexistence of the SC-I phase and AFM-I phase is unusual on the contrary to superconductivity near a quantum critical point on most of heavy-fermion compounds.