Do you want to publish a course? Click here

[1,2]-Domination in Generalized Petersen Graphs

69   0   0.0 ( 0 )
 Added by Mohammed Haddad
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A vertex subset $S$ of a graph $G=(V,E)$ is a $[1,2]$-dominating set if each vertex of $Vbackslash S$ is adjacent to either one or two vertices in $S$. The minimum cardinality of a $[1,2]$-dominating set of $G$, denoted by $gamma_{[1,2]}(G)$, is called the $[1,2]$-domination number of $G$. In this paper the $[1,2]$-domination and the $[1,2]$-total domination numbers of the generalized Petersen graphs $P(n,2)$ are determined.



rate research

Read More

123 - Paul Dorbec 2017
Power domination in graphs emerged from the problem of monitoring an electrical system by placing as few measurement devices in the system as possible. It corresponds to a variant of domination that includes the possibility of propagation. For measurement devices placed on a set S of vertices of a graph G, the set of monitored vertices is initially the set S together with all its neighbors. Then iteratively, whenever some monitored vertex v has a single neighbor u not yet monitored, u gets monitored. A set S is said to be a power dominating set of the graph G if all vertices of G eventually are monitored. The power domination number of a graph is the minimum size of a power dominating set. In this paper, we prove that any maximal planar graph of order n $ge$ 6 admits a power dominating set of size at most (n--2)/4 .
We show that the cop number of every generalized Petersen graph is at most 4. The strategy is to play a modified game of cops and robbers on an infinite cyclic covering space where the objective is to capture the robber or force the robber towards an end of the infinite graph. We prove that finite isometric subtrees are 1-guardable and apply this to determine the exact cop number of some families of generalized Petersen graphs. We also extend these ideas to prove that the cop number of any connected I-graph is at most 5.
387 - Martin Dyer , Haiko Muller 2018
For any class $mathcal{C}$ of bipartite graphs, we define quasi-$cal C$ to be the class of all graphs $G$ such that every bipartition of $G$ belongs to $cal C$. This definition is motivated by a generalisation of the switch Markov chain on perfect matchings from bipartite graphs to nonbipartite graphs. The monotone graphs, also known as bipartite permutation graphs and proper interval bigraphs, are such a class of bipartite graphs. We investigate the structure of quasi-monotone graphs and hence construct a polynomial time recognition algorithm for graphs in this class.
A matching $M$ in a graph $G$ is said to be uniquely restricted if there is no other matching in $G$ that matches the same set of vertices as $M$. We describe a polynomial-time algorithm to compute a maximum cardinality uniquely restricted matching in an interval graph, thereby answering a question of Golumbic et al. (Uniquely restricted matchings, M. C. Golumbic, T. Hirst and M. Lewenstein, Algorithmica, 31:139--154, 2001). Our algorithm actually solves the more general problem of computing a maximum cardinality strong independent set in an interval nest digraph, which may be of independent interest. Further, we give linear-time algorithms for computing maximum cardinality uniquely restricted matchings in proper interval graphs and bipartite permutation graphs.
A graph $G$ is said to be the intersection of graphs $G_1,G_2,ldots,G_k$ if $V(G)=V(G_1)=V(G_2)=cdots=V(G_k)$ and $E(G)=E(G_1)cap E(G_2)capcdotscap E(G_k)$. For a graph $G$, $mathrm{dim}_{COG}(G)$ (resp. $mathrm{dim}_{TH}(G)$) denotes the minimum number of cographs (resp. threshold graphs) whose intersection gives $G$. We present several new bounds on these parameters for general graphs as well as some special classes of graphs. It is shown that for any graph $G$: (a) $mathrm{dim}_{COG}(G)leqmathrm{tw}(G)+2$, (b) $mathrm{dim}_{TH}(G)leqmathrm{pw}(G)+1$, and (c) $mathrm{dim}_{TH}(G)leqchi(G)cdotmathrm{box}(G)$, where $mathrm{tw}(G)$, $mathrm{pw}(G)$, $chi(G)$ and $mathrm{box}(G)$ denote respectively the treewidth, pathwidth, chromatic number and boxicity of the graph $G$. We also derive the exact values for these parameters for cycles and show that every forest is the intersection of two cographs. These results allow us to derive improved bounds on $mathrm{dim}_{COG}(G)$ and $mathrm{dim}_{TH}(G)$ when $G$ belongs to some special graph classes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا