Do you want to publish a course? Click here

Bounded Delay Scheduling with Packet Dependencies

141   0   0.0 ( 0 )
 Added by Michael Markovitch
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

A common situation occurring when dealing with multimedia traffic is having large data frames fragmented into smaller IP packets, and having these packets sent independently through the network. For real-time multimedia traffic, dropping even few packets of a frame may render the entire frame useless. Such traffic is usually modeled as having {em inter-packet dependencies}. We study the problem of scheduling traffic with such dependencies, where each packet has a deadline by which it should arrive at its destination. Such deadlines are common for real-time multimedia applications, and are derived from stringent delay constraints posed by the application. The figure of merit in such environments is maximizing the systems {em goodput}, namely, the number of frames successfully delivered. We study online algorithms for the problem of maximizing goodput of delay-bounded traffic with inter-packet dependencies, and use competitive analysis to evaluate their performance. We present competitive algorithms for the problem, as well as matching lower bounds that are tight up to a constant factor. We further present the results of a simulation study which further validates our algorithmic approach and shows that insights arising from our analysis are indeed manifested in practice.



rate research

Read More

111 - Tuan-Anh Le , Loc X. Bui 2015
Multipath TCP (MPTCP) is a transport layer protocol that allows network devices to transfer data over multiple concurrent paths, and hence, utilizes the network resources more effectively than does the traditional single-path TCP. However, as a reliable protocol, MPTCP still needs to deliver data packets (to the upper application) at the receiver in the same order they are transmitted at the sender. The out-of-order packet problem becomes more severe for MPTCP due to the heterogeneous nature of delay and bandwidth of each path. In this paper, we propose the forward-delay-based packet scheduling (FDPS) algorithm for MPTCP to address that problem. The main idea is that the sender dispatches packets via concurrent paths according to their estimated forward delay and throughput differences. Via simulations with various network conditions, the results show that our algorithm significantly maintains in-order arrival packets at the receiver compared with several previous algorithms.
Packet scheduling determines the ordering of packets in a queuing data structure with respect to some ranking function that is mandated by a scheduling policy. It is the core component in many recent innovations to optimize network performance and utilization. Our focus in this paper is on the design and deployment of packet scheduling in software. Software schedulers have several advantages over hardware including shorter development cycle and flexibility in functionality and deployment location. We substantially improve current software packet scheduling performance, while maintaining flexibility, by exploiting underlying features of packet ranking; namely, packet ranks are integers and, at any point in time, fall within a limited range of values. We introduce Eiffel, a novel programmable packet scheduling system. At the core of Eiffel is an integer priority queue based on the Find First Set (FFS) instruction and designed to support a wide range of policies and ranking functions efficiently. As an even more efficient alternative, we also propose a new approximate priority queue that can outperform FFS-based queues for some scenarios. To support flexibility, Eiffel introduces novel programming abstractions to express scheduling policies that cannot be captured by current, state-of-the-art scheduler programming models. We evaluate Eiffel in a variety of settings and in both kernel and userspace deployments. We show that it outperforms state of the art systems by 3-40x in terms of either number of cores utilized for network processing or number of flows given fixed processing capacity.
Quite a few algorithms have been proposed to optimize the transmission performance of Multipath TCP (MPTCP). However, existing MPTCP protocols are still far from satisfactory in lossy and ever-changing networks because of their loss-based congestion control and the difficulty of managing multiple subflows. Recently, a congestion-based congestion control, BBR, is proposed to promote TCP transmission performance through better use of bandwidth. Due to the superior performance of BBR, we try to boost MPTCP with it. For this propose, coupled congestion control should be redesigned for MPTCP, and a functional scheduler able to effectively make use of the characteristics of BBR must also be developed for better performance. In this paper, we first propose Coupled BBR as a coupled congestion control algorithm for MPTCP to achieve high throughput and stable sending rate in lossy network scenarios with guaranteed fairness with TCP BBR flows and balanced congestion. Then, to further improve the performance, we propose an Adaptively Redundant and Packet-by-Packet (AR&P) scheduler, which includes two scheduling methods to improve adaptability in highly dynamic network scenarios and keep in-order packet delivery in asymmetric networks. Based on Linux kernel implementation and experiments in both testbed and real network scenarios, we show that the proposed scheme not only provides higher throughput, but also improves robustness and reduces out-of-order packets in some harsh circumstances.
Throughput and per-packet delay can present strong trade-offs that are important in the cases of delay sensitive applications.We investigate such trade-offs using a random linear network coding scheme for one or more receivers in single hop wireless packet erasure broadcast channels. We capture the delay sensitivities across different types of network applications using a class of delay metrics based on the norms of packet arrival times. With these delay metrics, we establish a unified framework to characterize the rate and delay requirements of applications and optimize system parameters. In the single receiver case, we demonstrate the trade-off between average packet delay, which we view as the inverse of throughput, and maximum ordered inter-arrival delay for various system parameters. For a single broadcast channel with multiple receivers having different delay constraints and feedback delays, we jointly optimize the coding parameters and time-division scheduling parameters at the transmitters. We formulate the optimization problem as a Generalized Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the coding and scheduling parameters for efficient allocation of network resources under varying delay constraints. In the case where the receivers are served by multiple non-interfering wireless broadcast channels, the same optimization problem is formulated as a Signomial Program, which is NP-hard in general. We provide approximation methods using successive formulation of geometric programs and show the convergence of approximations.
We consider the transmission of packets across a lossy end-to-end network path so as to achieve low in-order delivery delay. This can be formulated as a decision problem, namely deciding whether the next packet to send should be an information packet or a coded packet. Importantly, this decision is made based on delayed feedback from the receiver. While an exact solution to this decision problem is challenging, we exploit ideas from queueing theory to derive scheduling policies based on prediction of a receiver queue length that, while suboptimal, can be efficiently implemented and offer substantially better performance than state of the art approaches. We obtain a number of useful analytic bounds that help characterise design trade-offs and our analysis highlights that the use of prediction plays a key role in achieving good performance in the presence of significant feedback delay. Our approach readily generalises to networks of paths and we illustrate this by application to multipath transport scheduler design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا