Do you want to publish a course? Click here

Joint Coding and Scheduling Optimization in Wireless Systems with Varying Delay Sensitivities

404   0   0.0 ( 0 )
 Added by Weifei Zeng
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

Throughput and per-packet delay can present strong trade-offs that are important in the cases of delay sensitive applications.We investigate such trade-offs using a random linear network coding scheme for one or more receivers in single hop wireless packet erasure broadcast channels. We capture the delay sensitivities across different types of network applications using a class of delay metrics based on the norms of packet arrival times. With these delay metrics, we establish a unified framework to characterize the rate and delay requirements of applications and optimize system parameters. In the single receiver case, we demonstrate the trade-off between average packet delay, which we view as the inverse of throughput, and maximum ordered inter-arrival delay for various system parameters. For a single broadcast channel with multiple receivers having different delay constraints and feedback delays, we jointly optimize the coding parameters and time-division scheduling parameters at the transmitters. We formulate the optimization problem as a Generalized Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the coding and scheduling parameters for efficient allocation of network resources under varying delay constraints. In the case where the receivers are served by multiple non-interfering wireless broadcast channels, the same optimization problem is formulated as a Signomial Program, which is NP-hard in general. We provide approximation methods using successive formulation of geometric programs and show the convergence of approximations.



rate research

Read More

Unlike theoretical distributed learning (DL), DL over wireless edge networks faces the inherent dynamics/uncertainty of wireless connections and edge nodes, making DL less efficient or even inapplicable under the highly dynamic wireless edge networks (e.g., using mmW interfaces). This article addresses these problems by leveraging recent advances in coded computing and the deep dueling neural network architecture. By introducing coded structures/redundancy, a distributed learning task can be completed without waiting for straggling nodes. Unlike conventional coded computing that only optimizes the code structure, coded distributed learning over the wireless edge also requires to optimize the selection/scheduling of wireless edge nodes with heterogeneous connections, computing capability, and straggling effects. However, even neglecting the aforementioned dynamics/uncertainty, the resulting joint optimization of coding and scheduling to minimize the distributed learning time turns out to be NP-hard. To tackle this and to account for the dynamics and uncertainty of wireless connections and edge nodes, we reformulate the problem as a Markov Decision Process and then design a novel deep reinforcement learning algorithm that employs the deep dueling neural network architecture to find the jointly optimal coding scheme and the best set of edge nodes for different learning tasks without explicit information about the wireless environment and edge nodes straggling parameters. Simulations show that the proposed framework reduces the average learning delay in wireless edge computing up to 66% compared with other DL approaches. The jointly optimal framework in this article is also applicable to any distributed learning scheme with heterogeneous and uncertain computing nodes.
We consider the transmission of packets across a lossy end-to-end network path so as to achieve low in-order delivery delay. This can be formulated as a decision problem, namely deciding whether the next packet to send should be an information packet or a coded packet. Importantly, this decision is made based on delayed feedback from the receiver. While an exact solution to this decision problem is challenging, we exploit ideas from queueing theory to derive scheduling policies based on prediction of a receiver queue length that, while suboptimal, can be efficiently implemented and offer substantially better performance than state of the art approaches. We obtain a number of useful analytic bounds that help characterise design trade-offs and our analysis highlights that the use of prediction plays a key role in achieving good performance in the presence of significant feedback delay. Our approach readily generalises to networks of paths and we illustrate this by application to multipath transport scheduler design.
A common situation occurring when dealing with multimedia traffic is having large data frames fragmented into smaller IP packets, and having these packets sent independently through the network. For real-time multimedia traffic, dropping even few packets of a frame may render the entire frame useless. Such traffic is usually modeled as having {em inter-packet dependencies}. We study the problem of scheduling traffic with such dependencies, where each packet has a deadline by which it should arrive at its destination. Such deadlines are common for real-time multimedia applications, and are derived from stringent delay constraints posed by the application. The figure of merit in such environments is maximizing the systems {em goodput}, namely, the number of frames successfully delivered. We study online algorithms for the problem of maximizing goodput of delay-bounded traffic with inter-packet dependencies, and use competitive analysis to evaluate their performance. We present competitive algorithms for the problem, as well as matching lower bounds that are tight up to a constant factor. We further present the results of a simulation study which further validates our algorithmic approach and shows that insights arising from our analysis are indeed manifested in practice.
It has been recently brought into spotlight that through the exploitation of network coding concepts at physical-layer, the interference property of the wireless media can be proven to be a blessing in disguise. Nonetheless, most of the previous studies on this subject have either held unrealistic assumptions about the network properties, thus making them basically theoretical, or have otherwise been limited to fairly simple network topologies. We, on the other hand, believe to have devised a novel scheme, called Real Amplitude Scaling (RAS), that relaxes the aforementioned restrictions, and works with a wider range of network topologies and in circumstances that are closer to practice, for instance in lack of symbol-level synchronization and in the presence of noise, channel distortion and severe interference from other sources. The simulation results confirmed the superior performance of the proposed method in low SNRs, as well as the high SNR limits, where the effect of quantization error in the digital techniques becomes comparable to the channel.
The energy consumption in wireless multimedia sensor networks (WMSN) is much greater than that in traditional wireless sensor networks. Thus, it is a huge challenge to remain the perpetual operation for WMSN. In this paper, we propose a new heterogeneous energy supply model for WMSN through the coexistence of renewable energy and electricity grid. We address to cross-layer optimization for the multiple multicast with distributed source coding and intra-session network coding in heterogeneous powered wireless multimedia sensor networks (HPWMSN) with correlated sources. The aim is to achieve the optimal reconstruct distortion at sinks and the minimal cost of purchasing electricity from electricity grid. Based on the Lyapunov drift-plus-penalty with perturbation technique and dual decomposition technique, we propose a fully distributed dynamic cross-layer algorithm, including multicast routing, source rate control, network coding, session scheduling and energy management, only requiring knowledge of the instantaneous system state. The explicit trade-off between the optimization objective and queue backlog is theoretically proven. Finally, the simulation results verify the theoretic claims.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا