Do you want to publish a course? Click here

The Hawking-Penrose singularity theorem for $C^{1,1}$-Lorentzian metrics

103   0   0.0 ( 0 )
 Added by Melanie Graf
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the Hawking--Penrose singularity theorem, and the generalisation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian metrics that are of $C^{1, 1}$-regularity. We formulate appropriate wea



rate research

Read More

We provide a detailed proof of Hawkings singularity theorem in the regularity class $C^{1,1}$, i.e., for spacetime metrics possessing locally Lipschitz continuous first derivatives. The proof uses recent results in $C^{1,1}$-causality theory and is based on regularisation techniques adapted to the causal structure.
We extend the validity of the Penrose singularity theorem to spacetime metrics of regularity $C^{1,1}$. The proof is based on regularisation techniques, combined with recent results in low regularity causality theory.
We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to $C^{1,1}$. Our approach is based on regularisations of the metric adapted to the causal structure.
We prove a Gannon-Lee theorem for non-globally hyperbolic Lo-rentzian metrics of regularity $C^1$, the most general regularity class currently available in the context of the classical singularity theorems. Along the way we also prove that any maximizing causal curve in a $C^1$-spacetime is a geodesic and hence of $C^2$-regularity.
We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut theorem for boundary regions, applied recently to develop a bit-thread interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous min flow-max cut theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworths theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا