Do you want to publish a course? Click here

A regularisation approach to causality theory for $C^{1,1}$-Lorentzian metrics

172   0   0.0 ( 0 )
 Added by Roland Steinbauer
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to $C^{1,1}$. Our approach is based on regularisations of the metric adapted to the causal structure.

rate research

Read More

We provide a detailed proof of Hawkings singularity theorem in the regularity class $C^{1,1}$, i.e., for spacetime metrics possessing locally Lipschitz continuous first derivatives. The proof uses recent results in $C^{1,1}$-causality theory and is based on regularisation techniques adapted to the causal structure.
We show that the Hawking--Penrose singularity theorem, and the generalisation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian metrics that are of $C^{1, 1}$-regularity. We formulate appropriate wea
We describe three-dimensional Lorentzian homogeneous Ricci solitons, showing that all types (i.e. shrinking, expanding and steady) exist. Moreover, all non-trivial examples have non-diagonalizable Ricci operator with one only eigenvalue.
Some analysis on the Lorentzian distance in a spacetime with controlled sectional (or Ricci) curvatures is done. In particular, we focus on the study of the restriction of such distance to a spacelike hypersurface satisfying the Omori-Yau maximum principle. As a consequence, and under appropriate hypotheses on the (sectional or Ricci) curvatures of the ambient spacetime, we obtain sharp estimates for the mean curvature of those hypersurfaces. Moreover, we also give a suficient condition for its hyperbolicity.
On a time-oriented Lorentzian manifold $(M,g)$ with non-empty boundary satisfying a convexity assumption, we show that the topological, differentiable, and conformal structure of suitable subsets $Ssubset M$ of sources is uniquely determined by measurements of the intersection of future light cones from points in $S$ with a fixed open subset of the boundary of $M$; here, light rays are reflected at $partial M$ according to Snells law. Our proof is constructive, and allows for interior conjugate points as well as multiply reflected and self-intersecting light cones.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا