We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to $C^{1,1}$. Our approach is based on regularisations of the metric adapted to the causal structure.
We provide a detailed proof of Hawkings singularity theorem in the regularity class $C^{1,1}$, i.e., for spacetime metrics possessing locally Lipschitz continuous first derivatives. The proof uses recent results in $C^{1,1}$-causality theory and is based on regularisation techniques adapted to the causal structure.
We show that the Hawking--Penrose singularity theorem, and the generalisation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian metrics that are of $C^{1, 1}$-regularity. We formulate appropriate wea
We describe three-dimensional Lorentzian homogeneous Ricci solitons, showing that all types (i.e. shrinking, expanding and steady) exist. Moreover, all non-trivial examples have non-diagonalizable Ricci operator with one only eigenvalue.
Some analysis on the Lorentzian distance in a spacetime with controlled sectional (or Ricci) curvatures is done. In particular, we focus on the study of the restriction of such distance to a spacelike hypersurface satisfying the Omori-Yau maximum principle. As a consequence, and under appropriate hypotheses on the (sectional or Ricci) curvatures of the ambient spacetime, we obtain sharp estimates for the mean curvature of those hypersurfaces. Moreover, we also give a suficient condition for its hyperbolicity.
On a time-oriented Lorentzian manifold $(M,g)$ with non-empty boundary satisfying a convexity assumption, we show that the topological, differentiable, and conformal structure of suitable subsets $Ssubset M$ of sources is uniquely determined by measurements of the intersection of future light cones from points in $S$ with a fixed open subset of the boundary of $M$; here, light rays are reflected at $partial M$ according to Snells law. Our proof is constructive, and allows for interior conjugate points as well as multiply reflected and self-intersecting light cones.
Michael Kunzinger
,Roland Steinbauer
,James A. Vickers
.
(2013)
.
"A regularisation approach to causality theory for $C^{1,1}$-Lorentzian metrics"
.
Roland Steinbauer
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا