Do you want to publish a course? Click here

Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories

102   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abr.) Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part) the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF) on UT4 at the VLT, we characterize the spectral signature of the uplink beams from the 22W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the MUSE optical integral field spectrograph to acquire spectra at a resolution of R~3000 of the uplink laser beams over the wavelength range of 4750AA to 9350AA. We report the first detection of laser-induced Raman scattering by N2, O2, CO2, H2O and (tentatively) CH4 molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons -- but 480AA to 2210AA redder than the original laser wavelength of 5889.959AA -- landing on the 8.2m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering is not unique to the observatory of Cerro Paranal, but common to any astronomical telescope employing a laser-guide-star (LGS) system. It is thus essential for any optical spectrograph coupled to a LGS system to handle thoroughly the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope. At sites hosting multiple telescopes, laser collision prediction tools also ought to account for the presence of Raman emission from the uplink laser beam(s) to avoid the unintentional contamination of observations acquired with telescopes in the vicinity of a LGS system.



rate research

Read More

Raman scattering enables unforeseen uses for the laser guide-star system of the Very Large Telescope. Here, we present the observation of one up-link sodium laser beam acquired with the ESPRESSO spectrograph at a resolution $lambda/Deltalambda sim 140000$. In 900s on-source, we detect the pure rotational Raman lines of $^{16}$O$_2$, $^{14}$N$_2$, and $^{14}$N$^{15}$N (tentatively) up to rotational quantum numbers $J$ of 27, 24, and 9, respectively. We detect the $^{16}$O$_2$ fine-structure lines induced by the interaction of the electronic spin textbf{S} and end-over-end rotational angular momentum textbf{N} in the electronic ground state of this molecule up to $N=9$. The same spectrum also reveals the $ u_{1leftarrow0}$ rotational-vibrational Q-branch for $^{16}$O$_2$ and $^{14}$N$_2$. These observations demonstrate the potential of using laser guide-star systems as accurate calibration sources for characterizing new astronomical spectrographs.
266 - Juan P. Madrid 2009
We derive the ranking of the astronomical observatories with the highest impact in astronomy based on the citation analysis of papers published in 2006. We also present a description of the methodology we use to derive this ranking. The current ranking is lead by the Sloan Digital Sky Survey, followed by Swift and the Hubble Space Telescope.
We present a machine learning based information retrieval system for astronomical observatories that tries to address user defined queries related to an instrument. In the modern instrumentation scenario where heterogeneous systems and talents are simultaneously at work, the ability to supply with the right information helps speeding up the detector maintenance operations. Enhancing the detector uptime leads to increased coincidence observation and improves the likelihood for the detection of astrophysical signals. Besides, such efforts will efficiently disseminate technical knowledge to a wider audience and will help the ongoing efforts to build upcoming detectors like the LIGO-India etc even at the design phase to foresee possible challenges. The proposed method analyses existing documented efforts at the site to intelligently group together related information to a query and to present it on-line to the user. The user in response can further go into interesting links and find already developed solutions or probable ways to address the present situation optimally. A web application that incorporates the above idea has been implemented and tested for LIGO Livingston, LIGO Hanford and Virgo observatories.
The first observations of laser guide star photons Raman-scattered by air molecules above the Very Large Telescope (VLT) were reported in June 2017. The initial detection came from the Multi-Unit Spectroscopic Explorer (MUSE) optical integral field spectrograph, following the installation of the 4 Laser Guide Star Facility (4LGSF) on the Unit Telescope 4 (UT4) of the VLT. In this Letter, we delve further into the symbiotic relationship between the 4LGSF laser guide star system, the UT4 telescope, and MUSE by monitoring the spectral contamination of MUSE observations by Raman photons over a 27 month period. This dataset reveals that dust particles deposited on the primary and tertiary mirrors of UT4 -- responsible for a reflectivity loss of ~8% at 6000{AA} -- contribute (60$pm5)% to the laser line fluxes detected by MUSE. The flux of Raman lines, contaminating scientific observations acquired with optical spectrographs, thus provides a new, non-invasive means to monitor the evolving scatter properties of the mirrors of astronomical telescopes equipped with laser guide star systems.
Astronomical images from optical photometric surveys are typically contaminated with transient artifacts such as cosmic rays, satellite trails and scattered light. We have developed and tested an algorithm that removes these artifacts using a deep, artifact free, static sky coadd image built up through the median combination of point spread function (PSF) homogenized, overlapping single epoch images. Transient artifacts are detected and masked in each single epoch image through comparison with an artifact free, PSF-matched simulated image that is constructed using the PSF-corrected, model fitting catalog from the artifact free coadd image together with the position variable PSF model of the single epoch image. This approach works well not only for cleaning single epoch images with worse seeing than the PSF homogenized coadd, but also the traditionally much more challenging problem of cleaning single epoch images with better seeing. In addition to masking transient artifacts, we have developed an interpolation approach that uses the local PSF and performs well in removing artifacts whose widths are smaller than the PSF full width at half maximum, including cosmic rays, the peaks of saturated stars and bleed trails. We have tested this algorithm on Dark Energy Survey Science Verification data and present performance metrics. More generally, our algorithm can be applied to any survey which images the same part of the sky multiple times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا