We derive the ranking of the astronomical observatories with the highest impact in astronomy based on the citation analysis of papers published in 2006. We also present a description of the methodology we use to derive this ranking. The current ranking is lead by the Sloan Digital Sky Survey, followed by Swift and the Hubble Space Telescope.
We present a machine learning based information retrieval system for astronomical observatories that tries to address user defined queries related to an instrument. In the modern instrumentation scenario where heterogeneous systems and talents are simultaneously at work, the ability to supply with the right information helps speeding up the detector maintenance operations. Enhancing the detector uptime leads to increased coincidence observation and improves the likelihood for the detection of astrophysical signals. Besides, such efforts will efficiently disseminate technical knowledge to a wider audience and will help the ongoing efforts to build upcoming detectors like the LIGO-India etc even at the design phase to foresee possible challenges. The proposed method analyses existing documented efforts at the site to intelligently group together related information to a query and to present it on-line to the user. The user in response can further go into interesting links and find already developed solutions or probable ways to address the present situation optimally. A web application that incorporates the above idea has been implemented and tested for LIGO Livingston, LIGO Hanford and Virgo observatories.
(Abr.) Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part) the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF) on UT4 at the VLT, we characterize the spectral signature of the uplink beams from the 22W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the MUSE optical integral field spectrograph to acquire spectra at a resolution of R~3000 of the uplink laser beams over the wavelength range of 4750AA to 9350AA. We report the first detection of laser-induced Raman scattering by N2, O2, CO2, H2O and (tentatively) CH4 molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons -- but 480AA to 2210AA redder than the original laser wavelength of 5889.959AA -- landing on the 8.2m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering is not unique to the observatory of Cerro Paranal, but common to any astronomical telescope employing a laser-guide-star (LGS) system. It is thus essential for any optical spectrograph coupled to a LGS system to handle thoroughly the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope. At sites hosting multiple telescopes, laser collision prediction tools also ought to account for the presence of Raman emission from the uplink laser beam(s) to avoid the unintentional contamination of observations acquired with telescopes in the vicinity of a LGS system.
We present here a provenance management system adapted to astronomical projects needs. We collected use cases from various astronomy projects and defined a data model in the ecosystem developed by the IVOA (International Virtual Observatory Alliance). From those use cases, we observed that some projects already have data collections generated and archived, from which the provenance has to be extracted (provenance on top), and some projects are building complex pipelines that automatically capture provenance information during the data processing (capture inside). Different tools and prototypes have been developed and tested to capture, store, access and visualize the provenance information, which participate to the shaping of a full provenance management system able to handle detailed provenance information.
We have discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications. An offset in the digitization of the CCD output voltage that depends on the binary encoding of one pixel is added to pixels that are read out one, two and/or three pixels later. One result of this effect is the introduction of a differential offset in the background when comparing regions with and without flux from science targets. Conventional data reduction methods do not correct for this offset. We find this effect in 16 of 22 instruments investigated, covering a variety of telescopes and many different front-end electronics systems. The affected instruments include LRIS and DEIMOS on the Keck telescopes, WFC3-UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. The amplitude of the introduced offset is up to 4.5 ADU per pixel, and it is not directly proportional to the measured ADU level. We have developed a model that can be used to detect this binary offset effect in data and correct for it. Understanding how data are affected and applying a correction for the effect is essential for precise astronomical measurements.
We review the potential of Astrophotonics, a relatively young field at the interface between photonics and astronomical instrumentation, for spectro-interferometry. We review some fundamental aspects of photonic science that drove the emer- gence of astrophotonics, and highlight the achievements in observational astrophysics. We analyze the prospects for further technological development also considering the potential synergies with other fields of physics (e.g. non-linear optics in condensed matter physics). We also stress the central role of fiber optics in routing and transporting light, delivering complex filters, or interfacing instruments and telescopes, more specifically in the context of a growing usage of adaptive optics.