No Arabic abstract
The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in alfa-FeRh-based junctions driven by the magnetic phase transition of alfa-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one alfa-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the alfa-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.
Fully-relativistic first-principles calculations of the Fe(001) surface demonstrate that resonant surface (interface) states may produce sizeable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single magnetic electrode. The effect is driven by the spin-orbit coupling. It shifts the resonant surface band via the Rashba effect when the magnetization direction changes. We find that spin-flip scattering at the interface is controlled not only by the strength of the spin-orbit coupling, but depends strongly on the intrinsic width of the resonant surface states.
The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interference between Bychkov-Rashba and Dresselhaus spin-orbit couplings that appear at junction interfaces and in the tunneling region. We also investigate the transport properties of ferromagnet/semiconductor/ferromagnet tunnel junctions and show that in such structures the spin-orbit interaction leads not only to the TAMR effect but also to the anisotropy of the conventional tunneling magnetoresistance (TMR). The resulting anisotropic tunneling magnetoresistance (ATMR) depends on the absolute magnetization directions in the ferromagnets. Within the proposed model, depending on the magnetization directions in the ferromagnets, the interplay of Bychkov-Rashba and Dresselhaus spin-orbit couplings produces differences between the rates of transmitted and reflected spins at the ferromagnet/seminconductor interfaces, which results in an anisotropic local density of states at the Fermi surface and in the TAMR and ATMR effects. Model calculations for Fe/GaAs/Fe tunnel junctions are presented. Furthermore, based on rather general symmetry considerations, we deduce the form of the magnetoresistance dependence on the absolute orientations of the magnetizations in the ferromagnets.
While the Berezinskii-Kosterlitz-Thouless transition (BKT) has been under intense scrutiny for decades, unambiguous experimental signatures in magnetic systems remain elusive. Here, we investigate the interplay between electronic and magnetic degrees of freedom near the BKT transition. Focusing on a metal with easy-plane ferromagnetic order, we establish a framework that accounts both for the coupling between the charge current and the flow of topological magnetic defects and for electron scattering on their inhomogeneous spin texture. We show that electron scattering is responsible for a temperature-dependent magnetoresistance effect scaling as the density of the topological defects, which is expected to increase dramatically above the BKT transition temperature. Our findings call for further experimental investigations.
We report observations of tunneling anisotropic magnetoresitance (TAMR) in vertical tunnel devices with a ferromagnetic multilayer-(Co/Pt) electrode and a non-magnetic Pt counter-electrode separated by an AlOx barrier. In stacks with the ferromagnetic electrode terminated by a Co film the TAMR magnitude saturates at 0.15% beyond which it shows only weak dependence on the magnetic field strength, bias voltage, and temperature. For ferromagnetic electrodes terminated by two monolayers of Pt we observe order(s) of magnitude enhancement of the TAMR and a strong dependence on field, temperature and bias. Discussion of experiments is based on relativistic ab initio calculations of magnetization orientation dependent densities of states of Co and Co/Pt model systems.
The origin of nematicity, i.e., in-plane rotational symmetry breaking, and in particular the relative role played by spontaneous unidirectional ordering of spin, orbital, or charge degrees of freedom, is a challenging issue of magnetism, unconventional superconductivity, and quantum Hall effect systems, discussed in the context of doped semiconductor systems, such as Ga$_{1-x}$Mn$_x$As, Cu$_x$Bi$_2$Se$_3$, and Ga(Al)As/Al$_x$Ga$_{1-x}$As quantum wells, respectively. Here, guided by our experimental and theoretical results for In$_{1-x}$Fe$_x$As, we demonstrate that spinodal phase separation at the growth surface (that has a lower symmetry than the bulk) can lead to a quenched nematic order of alloy components, which then governs low temperature magnetic and magnetotransport properties, in particular the magnetoresistance anisotropy whose theory for the $C_{2v}$ symmetry group is advanced here. These findings, together with earlier data for Ga$_{1-x}$Mn$_x$As, show under which conditions anisotropic chemical phase separation accounts for the magnitude of transition temperature to a collective phase or merely breaks its rotational symmetry. We address the question to what extent the directional distribution of impurities or alloy components setting in during the growth may account for the observed nematicity in other classes of correlated systems.