Do you want to publish a course? Click here

Nematicity of correlated systems driven by anisotropic chemical phase separation

128   0   0.0 ( 0 )
 Added by Tomasz Dietl
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The origin of nematicity, i.e., in-plane rotational symmetry breaking, and in particular the relative role played by spontaneous unidirectional ordering of spin, orbital, or charge degrees of freedom, is a challenging issue of magnetism, unconventional superconductivity, and quantum Hall effect systems, discussed in the context of doped semiconductor systems, such as Ga$_{1-x}$Mn$_x$As, Cu$_x$Bi$_2$Se$_3$, and Ga(Al)As/Al$_x$Ga$_{1-x}$As quantum wells, respectively. Here, guided by our experimental and theoretical results for In$_{1-x}$Fe$_x$As, we demonstrate that spinodal phase separation at the growth surface (that has a lower symmetry than the bulk) can lead to a quenched nematic order of alloy components, which then governs low temperature magnetic and magnetotransport properties, in particular the magnetoresistance anisotropy whose theory for the $C_{2v}$ symmetry group is advanced here. These findings, together with earlier data for Ga$_{1-x}$Mn$_x$As, show under which conditions anisotropic chemical phase separation accounts for the magnitude of transition temperature to a collective phase or merely breaks its rotational symmetry. We address the question to what extent the directional distribution of impurities or alloy components setting in during the growth may account for the observed nematicity in other classes of correlated systems.



rate research

Read More

The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in alfa-FeRh-based junctions driven by the magnetic phase transition of alfa-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one alfa-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the alfa-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.
Electronic phase separation is crucial for the fascinating macroscopic properties of the LaAlO3/SrTiO3 (LAO/STO) paradigm oxide interface, including the coexistence of superconductivity and ferromagnetism. We investigate this phenomenon using angle-resolved photoelectron spectroscopy (ARPES) in the soft-X-ray energy range, where the enhanced probing depth combined with resonant photoexcitation allow access to fundamental electronic structure characteristics (momentum-resolved spectral function, dispersions and ordering of energy bands, Fermi surface) of buried interfaces. Our experiment uses X-ray irradiation of the LAO/STO interface to tune its oxygen deficiency, building up a dichotomic system where mobile weakly correlated Ti t2g-electrons co-exist with localized strongly correlated Ti eg-ones. The ARPES spectra dynamics under X-ray irradiation shows a gradual intensity increase under constant Luttinger count of the Fermi surface. This fact identifies electronic phase separation (EPS) where the mobile electrons accumulate in conducting puddles with fixed electronic structure embedded in an insulating host phase, and allows us to estimate the lateral fraction of these puddles. We discuss the physics of EPS invoking a theoretical picture of oxygen-vacancy clustering, promoted by the magnetism of the localized Ti eg-electrons, and repelling of the mobile t2g-electrons from these clusters. Our results on the irradiation-tuned EPS elucidate the intrinsic one taking place at the stoichiometric LAO/STO interfaces.
We present a phenomenological model based on the thermodynamics of the phase separated state of manganites, accounting for its static and dynamic properties. Through calorimetric measurements on La$_{0.225}$Pr$_{0.40}$Ca$ _{0.375}$MnO$_{3}$ the low temperature free energies of the coexisting ferromagnetic and charge ordered phases are evaluated. The phase separated state is modeled by free energy densities uniformly spread over the sample volume. The calculations contemplate the out of equilibrium features of the coexisting phase regime, to allow a comparison between magnetic measurements and the predictions of the model. A phase diagram including the static and dynamic properties of the system is constructed, showing the existence of blocked and unblocked regimes which are characteristics of the phase separated state in manganites.
84 - D. Novko , F. Caruso , C. Draxl 2019
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
Fully-relativistic first-principles calculations of the Fe(001) surface demonstrate that resonant surface (interface) states may produce sizeable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single magnetic electrode. The effect is driven by the spin-orbit coupling. It shifts the resonant surface band via the Rashba effect when the magnetization direction changes. We find that spin-flip scattering at the interface is controlled not only by the strength of the spin-orbit coupling, but depends strongly on the intrinsic width of the resonant surface states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا