No Arabic abstract
We report observations of tunneling anisotropic magnetoresitance (TAMR) in vertical tunnel devices with a ferromagnetic multilayer-(Co/Pt) electrode and a non-magnetic Pt counter-electrode separated by an AlOx barrier. In stacks with the ferromagnetic electrode terminated by a Co film the TAMR magnitude saturates at 0.15% beyond which it shows only weak dependence on the magnetic field strength, bias voltage, and temperature. For ferromagnetic electrodes terminated by two monolayers of Pt we observe order(s) of magnitude enhancement of the TAMR and a strong dependence on field, temperature and bias. Discussion of experiments is based on relativistic ab initio calculations of magnetization orientation dependent densities of states of Co and Co/Pt model systems.
We observe spin-valve-like effects in nano-scaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer.
We present the Co-Gd composition dependence of the spin-Hall magnetoresistance (SMR) and anisotropic magnetoresistance (AMR) for ferrimagnetic Co100-xGdx / Pt bilayers. With Gd concentration x, its magnetic moment increasingly competes with the Co moment in the net magnetization. We find a nearly compensated ferrimagnetic state at x = 24. The AMR changes sign from positive to negative with increasing x, vanishing near the magnetization compensation. On the other hand, the SMR does not vary significantly even where the AMR vanishes. These experimental results indicate that very different scattering mechanisms are responsible for AMR and SMR. We discuss a possible origin for the alloy composition dependence.
The nucleation of reversed magnetic domains in Pt/Co/AlO$_{x}$ microstructures with perpendicular anisotropy was studied experimentally in the presence of an in-plane magnetic field. For large enough in-plane field, nucleation was observed preferentially at an edge of the sample normal to this field. The position at which nucleation takes place was observed to depend in a chiral way on the initial magnetization and applied field directions. An explanation of these results is proposed, based on the existence of a sizable Dzyaloshinskii-Moriya interaction in this sample. Another consequence of this interaction is that the energy of domain walls can become negative for in-plane fields smaller than the effective anisotropy field.
The Rashba effect leads to a chiral precession of the spins of moving electrons while the Dzyaloshinskii-Moriya interaction (DMI) generates preference towards a chiral profile of local spins. We predict that the exchange interaction between these two spin systems results in a chiral magnetoresistance depending on the chirality of the local spin texture. We observe this magnetoresistance by measuring the domain wall (DW) resistance in a uniquely designed Pt/Co/Pt zigzag wire, and by changing the chirality of the DW with applying an in-plane magnetic field. A chirality-dependent DW resistance is found, and a quantitative analysis shows a good agreement with a theory based on the Rashba model. Moreover, the DW resistance measurement allows us to independently determine the strength of the Rashba effect and the DMI simultaneously, and the result implies a possible correlation between the Rashba effect, the DMI, and the symmetric Heisenberg exchange.
Spin-valve is a microelectronic device in which high and low resistance states are realized by utilizing both charge and spin of carriers. Spin-valve structures used in modern hard drive read-heads and magnetic random access memories comprise two ferromagnetic (FM) electrodes whose relative magnetization orientations can be switched between parallel and antiparallel configurations, yielding the desired giant or tunneling magnetoresistance effect. In this paper we demonstrate >100$% spin-valve-like signal in a NiFe/IrMn/MgO/Pt stack with an antiferromagnet (AFM) on one side and a non-magnetic metal on the other side of the tunnel barrier. FM moments in NiFe are reversed by external fields <50mT and the exchange-spring effect of NiFe on IrMn induces rotation of AFM moments in IrMn which is detected by the measured tunneling anisotropic magnetoresistance (TAMR). Our work demonstrates a spintronic element whose transport characteristics are governed by an AFM. It demonstrates that sensitivity to low magnetic fields can be combined with large, spin-orbit coupling induced magneto-transport anisotropy using a single magnetic electrode. The AFM-TAMR provides means to study magnetic characteristics of AFM films by an electronic transport measurement.