Do you want to publish a course? Click here

On the timing properties of SAX J1808.4-3658 during its 2015 outburst

73   0   0.0 ( 0 )
 Added by Andrea Sanna
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin down at an average rate $dot{ u}_{text{SD}}=1.5(2)times 10^{-15}$ Hz s$^{-1}$. We also discuss possible corrections to the spin down rate accounting for mass accretion onto the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatible with a binary expansion at a mean rate $dot{P}_{orb}=3.6(4)times 10^{-12}$ s s$^{-1}$, in agreement with previously reported values. This fast evolution is incompatible with an evolution driven by angular momentum losses caused by gravitational radiation under the hypothesis of conservative mass transfer. We discuss the observed orbital expansion in terms of non-conservative mass transfer and gravitational quadrupole coupling mechanism. We find that the latter can explain, under certain conditions, small fluctuations (of the order of few seconds) of the orbital period around a global parabolic trend. At the same time, a non-conservative mass transfer is required to explain the observed fast orbital evolution, which likely reflects ejection of a large fraction of mass from the inner Lagrangian point caused by the irradiation of the donor by the magneto-dipole rotator during quiescence (radio-ejection model). This strong outflow may power tidal dissipation in the companion star and be responsible of the gravitational quadrupole change oscillations.



rate research

Read More

In this paper we present a coherent timing analysis of the 401 Hz pulsations of the accreting millisecond X-ray pulsar SAX J1808.4-3658 during its 2019 outburst. Using observations collected with the Neutron Star Interior Composition Explorer (NICER), we establish the pulsar spin frequency and orbital phase during its latest epoch. We find that the 2019 outburst shows a pronounced evolution in pulse phase over the course of the outburst. These phase shifts are found to correlate with the source flux, and are interpreted in terms of hot-spot drift on the stellar surface, driven by changes in the mass accretion rate. Additionally, we find that the long-term evolution of the pulsar spin frequency shows evidence for a modulation at the Earths orbital period, enabling pulsar timing based astrometry of this accreting millisecond pulsar.
An outburst of the accreting X-ray millisecond pulsar SAX J1808.4-3658 in October-November 2002 was followed by the Rossi X-ray Timing Explorer for more than a month. We demonstrate how the area covered by the hotspot at the neutron star surface is decreasing in the course of the outburst together with the reflection amplitude. These trends are in agreement with the natural scenario, where the disc inner edge is receding from the neutron star as the mass accretion rate drops. These findings are further supported by the variations of the pulse profiles, which clearly show the presence of the secondary maximum at the late stages of the outburst after October 29. This fact can be interpreted as the disc receding sufficiently far from the neutron star to open the view of the lower magnetic pole. In that case, the disc inner radius can be estimated. Assuming that disc is truncated at the Alfven radius, we constrain the stellar magnetic moment to mu=(9pm5) 10^{25} G cm^3, which corresponds to the surface field of 10^8 G. On the other hand, using the magnetic moment recently obtained from the observed pulsar spin-down rate we show that the disc edge has to be within factor of two of the Alfven radius, putting interesting constraints on the models of the disc-magnetosphere interaction. We also demonstrate that the sharp changes in the phase of the fundamental are intimately related to the variations of the pulse profile, which we associate with the varying obscuration of the antipodal spot. The pulse profile amplitude allows us to estimate the colatitude of the hotspot centroid to be 4-10 deg.
84 - A. Sanna , F. Pintore , E. Bozzo 2016
We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a comptonization of soft photons ($sim0.9$ keV) by an electron population with kT$_esim30$ keV, and at lower energies by a blackbody component with kT$sim0.5$ keV. A moderately broad, neutral Fe emission line and four narrow absorption lines are also found. By investigating the pulse phase evolution, we derived the best-fitting orbital solution for the 2015 outburst. Comparing the updated ephemeris with those of the previous outbursts, we set a $3sigma$ confidence level interval $-6.6times 10^{-13}$ s/s $< dot{P}_{orb} < 6.5 times 10^{-13}$ s/s on the orbital period derivative. Moreover, we investigated the pulse profile dependence on energy finding a peculiar behaviour of the pulse fractional amplitude and lags as a function of energy. We performed a phase-resolved spectroscopy showing that the blackbody component tracks remarkably well the pulse-profile, indicating that this component resides at the neutron star surface (hot-spot).
Low-mass X-ray binaries (LMXBs) are a natural workbench to study accretion disk phenomena and optimal background sources to measure elemental abundances in the Interstellar medium (ISM). In high-resolution XMM-Newton spectra, the LMXB SAX J1808.4-3658 showed in the past a neon column density significantly higher than expected given its small distance, presumably due to additional absorption from a neon-rich circumstellar medium (CSM). It is possible to detect intrinsic absorption from the CSM by evidence of Keplerian motions or outflows. For this purpose, we use a recent, deep (100 ks long), high-resolution Chandra/LETGS spectrum of SAX J1808.4-3658 in combination with archival data. We estimated the column densities of the different absorbers through the study of their absorption lines. We used both empirical and physical models involving photo- and collisional-ionization in order to determine the nature of the absorbers. The abundances of the cold interstellar gas match the solar values as expected given the proximity of the X-ray source. For the first time in this source, we detected neon and oxygen blueshifted absorption lines that can be well modeled with outflowing photoionized gas. The wind is neon rich (Ne/O>3) and may originate from processed, ionized gas near the accretion disk or its corona. The kinematics (v=500-1000 km/s) are indeed similar to those seen in other accretion disks. We also discovered a system of emission lines with very high Doppler velocities (v~24000 km/s) originating presumably closer to the compact object. Additional observations and UV coverage are needed to accurately determine the wind abundances and its ionization structure.
aims: We obtained phase-resolved spectroscopy of the accreting millisecond X-ray pulsar SAX J1808.4-3658 during its outburst in 2008 to find a signature of the donor star, constrain its radial velocity semi-amplitude (K_2), and derive estimates on the pulsar mass. methods: Using Doppler images of the Bowen region we find a significant (>8sigma) compact spot at a position where the donor star is expected. If this is a signature of the donor star, we measure K_em=248+/-20 km/s (1sigma confidence) which represents a strict lower limit to K_2. Also, the Doppler map of He II lambda4686 shows the characteristic signature of the accretion disk, and there is a hint of enhanced emission that may be a result of tidal distortions in the accretion disk that are expected in very low mass ratio interacting binaries. results: The lower-limit on K_2 leads to a lower-limit on the mass function of f(M_1)>0.10M_sun. Applying the maximum K-correction gives 228<K_2<322 km/s and a mass ratio of 0.051<q<0.072. conclusions: Despite the limited S/N of the data we were able to detect a signature of the donor star in SAX J1808.4-3658, although future observations during a new outburst are still warranted to confirm this. If the derived K_em is correct, the largest uncertainty in the determination of the mass of the neutron star in SAX J1808.4-3658 using dynamical studies lies with the poorly known inclination.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا