Do you want to publish a course? Click here

Spectral and timing properties of IGR J00291+5934 during its 2015 outburst

85   0   0.0 ( 0 )
 Added by Andrea Sanna
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a comptonization of soft photons ($sim0.9$ keV) by an electron population with kT$_esim30$ keV, and at lower energies by a blackbody component with kT$sim0.5$ keV. A moderately broad, neutral Fe emission line and four narrow absorption lines are also found. By investigating the pulse phase evolution, we derived the best-fitting orbital solution for the 2015 outburst. Comparing the updated ephemeris with those of the previous outbursts, we set a $3sigma$ confidence level interval $-6.6times 10^{-13}$ s/s $< dot{P}_{orb} < 6.5 times 10^{-13}$ s/s on the orbital period derivative. Moreover, we investigated the pulse profile dependence on energy finding a peculiar behaviour of the pulse fractional amplitude and lags as a function of energy. We performed a phase-resolved spectroscopy showing that the blackbody component tracks remarkably well the pulse-profile, indicating that this component resides at the neutron star surface (hot-spot).



rate research

Read More

IGR J00291+5934 is the fastest-known accretion-powered X-ray pulsar, discovered during a transient outburst in 2004. In this paper, we report on Integral and Swift observations during the 2015 outburst, which lasts for $sim25$ d. The source has not been observed in outburst since 2008, suggesting that the long-term accretion rate has decreased by a factor of two since discovery. The averaged broad-band (0.1 - 250 keV) persistent spectrum in 2015 is well described by a thermal Comptonization model with a column density of $N_{rm H} approx4times10^{21}$ cm$^{-2}$, a plasma temperature of $kT_{rm e} approx50$ keV, and a Thomson optical depth of $tau_{rm T}approx1$. Pulsations at the known spin period of the source are detected in the Integral data up to the $sim150$ keV energy band. We also report on the discovery of the first thermonuclear burst observed from IGR J00291+5934, which lasts around 7 min and occurs at a persistent emission level corresponding to roughly $1.6%$ of the Eddington accretion rate. The properties of the burst suggest it is powered primarily by helium ignited at a depth of $y_{rm ign}approx1.5times10^9$ g cm$^{-2}$ following the exhaustion by steady burning of the accreted hydrogen. The Swift/BAT data from the first $sim20$ s of the burst provide indications of a photospheric radius expansion phase. Assuming this is the case, we infer a source distance of $d = 4.2 pm 0.3$ kpc.
We present a spectral and timing study of the NuSTAR and Swift observations of the black hole candidate IGR J17091-3624 in the hard state during its outburst in 2016. Disk reflection is detected in each of the NuSTAR spectra taken in three epochs. Fitting with relativistic reflection models reveals that the accretion disk is truncated during all epochs with $R_{rm in}>10~r_{rm g}$, with the data favoring a low disk inclination of $sim 30^{circ}-40^{circ}$. The steepening of the continuum spectra between epochs is accompanied by a decrease in the high energy cut-off: the electron temperature $kT_{rm e}$ drops from $sim 64$ keV to $sim 26$ keV, changing systematically with the source flux. We detect type-C QPOs in the power spectra with frequency varying between 0.131 Hz and 0.327 Hz. In addition, a secondary peak is found in the power spectra centered at about 2.3 times the QPO frequency during all three epochs. The nature of this secondary frequency is uncertain, however a non-harmonic origin is favored. We investigate the evolution of the timing and spectral properties during the rising phase of the outburst and discuss their physical implications.
We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin down at an average rate $dot{ u}_{text{SD}}=1.5(2)times 10^{-15}$ Hz s$^{-1}$. We also discuss possible corrections to the spin down rate accounting for mass accretion onto the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatible with a binary expansion at a mean rate $dot{P}_{orb}=3.6(4)times 10^{-12}$ s s$^{-1}$, in agreement with previously reported values. This fast evolution is incompatible with an evolution driven by angular momentum losses caused by gravitational radiation under the hypothesis of conservative mass transfer. We discuss the observed orbital expansion in terms of non-conservative mass transfer and gravitational quadrupole coupling mechanism. We find that the latter can explain, under certain conditions, small fluctuations (of the order of few seconds) of the orbital period around a global parabolic trend. At the same time, a non-conservative mass transfer is required to explain the observed fast orbital evolution, which likely reflects ejection of a large fraction of mass from the inner Lagrangian point caused by the irradiation of the donor by the magneto-dipole rotator during quiescence (radio-ejection model). This strong outflow may power tidal dissipation in the companion star and be responsible of the gravitational quadrupole change oscillations.
The accretion-powered millisecond pulsar IGR J00291+5934 underwent two ~10 d long outbursts during 2008, separated by 30 d in quiescence. Such a short quiescent period between outbursts has never been seen before from a neutron star X-ray transient. X-ray pulsations at the 599 Hz spin frequency are detected throughout both outbursts. For the first time, we derive a pulse phase model that connects two outbursts, providing a long baseline for spin frequency measurement. Comparison with the frequency measured during the 2004 outburst of this source gives a spin-down during quiescence of -4(1)x10^-15 Hz/s, approximately an order of magnitude larger than the long-term spin-down observed in the 401 Hz accretion-powered pulsar SAX J1808.4-3658. If this spin-down is due to magnetic dipole radiation, it requires a 2x10^8 G field strength, and its high spin-down luminosity may be detectable with the Fermi Large Area Telescope. Alternatively, this large spin-down could be produced by gravitational wave emission from a fractional mass quadrupole moment of Q/I = 1x10^{-9}. The rapid succession of the outbursts also provides a unique test of models for accretion in low-mass X-ray binaries. Disk instability models generally predict that an outburst will leave the accretion disk too depleted to fuel a second outburst after such a brief quiescence. We suggest a modification in which the outburst is shut off by the onset of a propeller effect before the disk is depleted. This model can explain the short quiescence and the unusually slow rise of the light curve of the second 2008 outburst.
138 - N. La Palombara 2017
We report on the results of the $XMM-Newton$ observation of IGR J01572-7259 during its most recent outburst in 2016 May, the first since 2008. The source reached a flux $f sim 10^{-10}$ erg cm$^{-2}$ s$^{-1}$, which allowed us to perform a detailed analysis of its timing and spectral properties. We obtained a pulse period $P_{rm spin}$ = 11.58208(2) s. The pulse profile is double peaked and strongly energy dependent, as the second peak is prominent only at low energies and the pulsed fraction increases with energy. The main spectral component is a power-law model, but at low energies we also detected a soft thermal component, which can be described with either a blackbody or a hot plasma model. Both the EPIC and RGS spectra show several emission lines, which can be identified with the transition lines of ionized N, O, Ne, and Fe and cannot be described with a thermal emission model. The phase-resolved spectral analysis showed that the flux of both the soft excess and the emission lines vary with the pulse phase: the soft excess disappears in the first pulse and becomes significant only in the second, where also the Fe line is stronger. This variability is difficult to explain with emission from a hot plasma, while the reprocessing of the primary X-ray emission at the inner edge of the accretion disk provides a realiable scenario. On the other hand, the narrow emission lines can be due to the presence of photoionized matter around the accreting source.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا