Do you want to publish a course? Click here

Hybrid Spatio-Temporal Artificial Noise Design for Secure MIMOME-OFDM Systems

115   0   0.0 ( 0 )
 Added by Ahmed El Shafie
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper investigates artificial noise injection into the temporal and spatial dimensions of a legitimate wireless communication system to secure its transmissions from potential eavesdropping. We consider a multiple-input single-output (MISO) orthogonal frequency division multiplexing (OFDM) system in the presence of a single-antenna passive eavesdropper and derive both the secrecy rate and average secrecy rate of the legitimate system. It is assumed that the legitimate transmitter knows the full channel information of the legitimate transceivers but does not know the instantaneous channel state information of the passive eavesdropper. Closed-form expressions for the secrecy rate and average secrecy rate are derived for the asymptotic case with a large number of transmit antennas. We also investigate 1) the power allocation between the data and the AN; 2) the power allocation between the spatial and the temporal AN. Computer simulations are carried out to evaluate the performance of our proposed artificial noise scheme.



rate research

Read More

We investigate the physical-layer security of indoor hybrid parallel power-line/wireless orthogonal-frequency division-multiplexing (OFDM) communication systems. We propose an artificial-noise (AN) aided scheme to enhance the systems security in the presence of an eavesdropper by exploiting the decoupled nature of the power-line and wireless communication media. The proposed scheme does not require the instantaneous channel state information of the eavesdroppers links to be known at the legitimate nodes. In our proposed scheme, the legitimate transmitter (Alice) and the legitimate receiver (Bob) cooperate to secure the hybrid system where an AN signal is shared from Bob to Alice on the link with the lower channel-to-noise ratio (CNR) while the information stream in addition to a noisy-amplified version of the received AN signal is transmitted from Alice to Bob on the link with higher CNR at each OFDM sub-channel. In addition, we investigate the effect of the transmit power levels at both Alice and Bob and the power allocation ratio between the data and AN signals at Alice on the secure throughput. We investigate both single-link eavesdropping attacks, where only one link is exposed to eavesdropping attacks, and two-link eavesdropping attacks, where the two links are exposed to eavesdropping attacks.
Physical layer security has been considered as an important security approach in wireless communications to protect legitimate transmission from passive eavesdroppers. This paper investigates the physical layer security of a wireless multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system in the presence of a multiple-antenna eavesdropper. We first propose a transmit-filter-assisted secure MIMO-OFDM system which can destroy the orthogonality of eavesdroppers signals. Our proposed transmit filter can disturb the reception of eavesdropper while maintaining the quality of legitimate transmission. Then, we propose another artificial noise (AN)-assisted secure MIMO-OFDM system to further improve the security of the legitimate transmission. The time-domain AN signal is designed to disturb the reception of eavesdropper while the legitimate transmission will not be affected. Simulation results are presented to demonstrate the security performance of the proposed transmit filter design and AN-assisted scheme in the MIMO-OFDM system.
We propose a new scheme to enhance the physical-layer security of wireless single-input single-output orthogonal-frequency division-multiplexing (OFDM) transmissions from an electric vehicle, Alice, to the aggregator, Bob, in the presence of an eavesdropper, Eve. To prevent information leakage to Eve, Alice exploits the wireless channel randomness to extract secret key symbols that are used to encrypt some data symbols which are then multiplexed in the frequency domain with the remaining unencrypted data symbols. To secure the unencrypted data symbols, Alice transmits an artificial-noise (AN) signal superimposed over her data signal. We propose a three-level optimization procedure to increase the average secrecy rate of this wiretap channel by optimizing the transmit power allocation between the encrypted data symbols, unencrypted data symbols and the AN symbols. Our numerical results show that the proposed scheme achieves considerable secrecy rate gains compared to the benchmark cases
The vision for smart city imperiously appeals to the implementation of Internet-of-Things (IoT), some features of which, such as massive access and bursty short packet transmissions, require new methods to enable the cellular system to seamlessly support its integration. Rigorous theoretical analysis is indispensable to obtain constructive insight for the networking design of massive access. In this paper, we propose and define the notion of massive and sporadic access (MSA) to quantitatively describe the massive access of IoT devices. We evaluate the temporal correlation of interference and successful transmission events, and verify that such correlation is negligible in the scenario of MSA. In view of this, in order to resolve the difficulty in any precise spatio-temporal analysis where complex interactions persist among the queues, we propose an approximation that all nodes are moving so fast that their locations are independent at different time slots. Furthermore, we compare the original static network and the equivalent network with high mobility to demonstrate the effectiveness of the proposed approximation approach. The proposed approach is promising for providing a convenient and general solution to evaluate and design the IoT network with massive and sporadic access.
154 - Amir Leshem , Michal Yemini 2017
We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا