No Arabic abstract
Much of human dialogue occurs in semi-cooperative settings, where agents with different goals attempt to agree on common decisions. Negotiations require complex communication and reasoning skills, but success is easy to measure, making this an interesting task for AI. We gather a large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each others reward functions must reach an agreement (or a deal) via natural language dialogue. For the first time, we show it is possible to train end-to-end models for negotiation, which must learn both linguistic and reasoning skills with no annotated dialogue states. We also introduce dialogue rollouts, in which the model plans ahead by simulating possible complete continuations of the conversation, and find that this technique dramatically improves performance. Our code and dataset are publicly available (https://github.com/facebookresearch/end-to-end-negotiator).
Attempts to render deep learning models interpretable, data-efficient, and robust have seen some success through hybridisation with rule-based systems, for example, in Neural Theorem Provers (NTPs). These neuro-symbolic models can induce interpretable rules and learn representations from data via back-propagation, while providing logical explanations for their predictions. However, they are restricted by their computational complexity, as they need to consider all possible proof paths for explaining a goal, thus rendering them unfit for large-scale applications. We present Conditional Theorem Provers (CTPs), an extension to NTPs that learns an optimal rule selection strategy via gradient-based optimisation. We show that CTPs are scalable and yield state-of-the-art results on the CLUTRR dataset, which tests systematic generalisation of neural models by learning to reason over smaller graphs and evaluating on larger ones. Finally, CTPs show better link prediction results on standard benchmarks in comparison with other neural-symbolic models, while being explainable. All source code and datasets are available online, at https://github.com/uclnlp/ctp.
Knowledge graph embedding has been an active research topic for knowledge base completion, with progressive improvement from the initial TransE, TransH, DistMult et al to the current state-of-the-art ConvE. ConvE uses 2D convolution over embeddings and multiple layers of nonlinear features to model knowledge graphs. The model can be efficiently trained and scalable to large knowledge graphs. However, there is no structure enforcement in the embedding space of ConvE. The recent graph convolutional network (GCN) provides another way of learning graph node embedding by successfully utilizing graph connectivity structure. In this work, we propose a novel end-to-end Structure-Aware Convolutional Network (SACN) that takes the benefit of GCN and ConvE together. SACN consists of an encoder of a weighted graph convolutional network (WGCN), and a decoder of a convolutional network called Conv-TransE. WGCN utilizes knowledge graph node structure, node attributes and edge relation types. It has learnable weights that adapt the amount of information from neighbors used in local aggregation, leading to more accurate embeddings of graph nodes. Node attributes in the graph are represented as additional nodes in the WGCN. The decoder Conv-TransE enables the state-of-the-art ConvE to be translational between entities and relations while keeps the same link prediction performance as ConvE. We demonstrate the effectiveness of the proposed SACN on standard FB15k-237 and WN18RR datasets, and it gives about 10% relative improvement over the state-of-the-art ConvE in terms of HITS@1, HITS@3 and HITS@10.
End-to-end multimodal learning on knowledge graphs has been left largely unaddressed. Instead, most end-to-end models such as message passing networks learn solely from the relational information encoded in graphs structure: raw values, or literals, are either omitted completely or are stripped from their values and treated as regular nodes. In either case we lose potentially relevant information which could have otherwise been exploited by our learning methods. To avoid this, we must treat literals and non-literals as separate cases. We must also address each modality separately and accordingly: numbers, texts, images, geometries, et cetera. We propose a multimodal message passing network which not only learns end-to-end from the structure of graphs, but also from their possibly divers set of multimodal node features. Our model uses dedicated (neural) encoders to naturally learn embeddings for node features belonging to five different types of modalities, including images and geometries, which are projected into a joint representation space together with their relational information. We demonstrate our model on a node classification task, and evaluate the effect that each modality has on the overall performance. Our result supports our hypothesis that including information from multiple modalities can help our models obtain a better overall performance.
A major bottleneck in training end-to-end task-oriented dialog system is the lack of data. To utilize limited training data more efficiently, we propose Modular Supervision Network (MOSS), an encoder-decoder training framework that could incorporate supervision from various intermediate dialog system modules including natural language understanding, dialog state tracking, dialog policy learning, and natural language generation. With only 60% of the training data, MOSS-all (i.e., MOSS with supervision from all four dialog modules) outperforms state-of-the-art models on CamRest676. Moreover, introducing modular supervision has even bigger benefits when the dialog task has a more complex dialog state and action space. With only 40% of the training data, MOSS-all outperforms the state-of-the-art model on a complex laptop network troubleshooting dataset, LaptopNetwork, that we introduced. LaptopNetwork consists of conversations between real customers and customer service agents in Chinese. Moreover, MOSS framework can accommodate dialogs that have supervision from different dialog modules at both the framework level and model level. Therefore, MOSS is extremely flexible to update in a real-world deployment.
We study the problem of word-level confidence estimation in subword-based end-to-end (E2E) models for automatic speech recognition (ASR). Although prior works have proposed training auxiliary confidence models for ASR systems, they do not extend naturally to systems that operate on word-pieces (WP) as their vocabulary. In particular, ground truth WP correctness labels are needed for training confidence models, but the non-unique tokenization from word to WP causes inaccurate labels to be generated. This paper proposes and studies two confidence models of increasing complexity to solve this problem. The final model uses self-attention to directly learn word-level confidence without needing subword tokenization, and exploits full context features from multiple hypotheses to improve confidence accuracy. Experiments on Voice Search and long-tail test sets show standard metrics (e.g., NCE, AUC, RMSE) improving substantially. The proposed confidence module also enables a model selection approach to combine an on-device E2E model with a hybrid model on the server to address the rare word recognition problem for the E2E model.