Do you want to publish a course? Click here

The effect of different in-chain impurities on the magnetic properties of the spin chain compound SrCuO$_2$ probed by NMR

73   0   0.0 ( 0 )
 Added by Hans-Joachim Grafe
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The S=1/2 Heisenberg spin chain compound SrCuO2 doped with different amounts of nickel (Ni), palladium (Pd), zinc (Zn) and cobalt (Co) has been studied by means of Cu nuclear magnetic resonance (NMR). Replacing only a few of the S=1/2 Cu ions with Ni, Pd, Zn or Co has a major impact on the magnetic properties of the spin chain system. In the case of Ni, Pd and Zn an unusual line broadening in the low temperature NMR spectra reveals the existence of an impurity-induced local alternating magnetization (LAM), while exponentially decaying spin-lattice relaxation rates $T_1^{-1}$ towards low temperatures indicate the opening of spin gaps. A distribution of gap magnitudes is proven by a stretched spin-lattice relaxation and a variation of $T_1^{-1}$ within the broad resonance lines. These observations depend strongly on the impurity concentration and therefore can be understood using the model of finite segments of the spin 1/2 antiferromagnetic Heisenberg chain, i.e. pure chain segmentation due to S = 0 impurities. This is surprising for Ni as it was previously assumed to be a magnetic impurity with S = 1 which is screened by the neighboring copper spins. In order to confirm the S = 0 state of the Ni, we performed x-ray absorption spectroscopy (XAS) and compared the measurements to simulated XAS spectra based on multiplet ligand-field theory. Furthermore, Zn doping leads to much smaller effects on both the NMR spectra and the spin-lattice relaxation rates, indicating that Zn avoids occupying Cu sites. For magnetic Co impurities, $T_1^{-1}$ does not obey the gap like decrease, and the low-temperature spectra get very broad. This could be related to the increase of the Neel temperature which was observed by recent muSR and susceptibility measurements, and is most likely an effect of the impurity spin $S eq0$.



rate research

Read More

We present a comprehensive macroscopic thermodynamic study of the quasi-one-dimensional (1D) $s = tfrac{1}{2}$ frustrated spin-chain system linarite. Susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements were performed to characterize the magnetic phase diagram. In particular, for magnetic fields along the b axis five different magnetic regions have been detected, some of them exhibiting short-range-order effects. The experimental magnetic entropy and magnetization are compared to a theoretical modelling of these quantities using DMRG and TMRG approaches. Within the framework of a purely 1D isotropic model Hamiltonian, only a qualitative agreement between theory and the experimental data can be achieved. Instead, it is demonstrated that a significant symmetric anisotropic exchange of about 10% is necessary to account for the basic experimental observations, including the 3D saturation field, and which in turn might stabilize a triatic (three-magnon) multipolar phase.
144 - L. Heinze , G. Bastien , B. Ryll 2019
We report on a detailed neutron diffraction and $^1$H-NMR study on the frustrated spin-1/2 chain material linarite, PbCuSO$_4$(OH)$_2$, where competing ferromagnetic nearest neighbor and antiferromagnetic next-nearest neighbor interactions lead to frustration. From the magnetic Bragg peak intensity studied down to 60 mK, the magnetic moment per Cu atom is obtained within the whole magnetic phase diagram for $H parallel b$ axis. Further, we establish the detailed configurations of the shift of the SDW propagation vector in phase V with field and temperature. Finally, combining our neutron diffraction results with those from a low-temperature/high-field NMR study we find an even more complex phase diagram close to the quasi-saturation field suggesting that bound two-magnon excitations are the lowest energy excitations close to and in the quasi-saturation regime. Qualitatively and semi-quantitatively, we relate such behavior to $XYZ$ exchange anisotropy and contributions from the Dzyaloshinsky-Moriya interaction to affect the magnetic properties of linarite.
189 - A Yagi , K Matsui , T Goto 2017
S = 1/2 competing spin chain compound Cs2Cu2Mo3O12 has two dominant exchange interactions of the nearest neighbouring ferromagnetic J1= 93 K and the second nearest neighbouring antiferromagnetic J2= +33 K, and is expected to show the nematic Tomonaga-Luttinger liquid (TLL) state under high magnetic field region. The recent theoretical study by Sato et al. has shown that in the nematic TLL state, the spin fluctuations are expected to be highly anisotropic, that is, its transverse component is suppressed. Our previous NMR study on the present system showed that the dominant contribution to nuclear spin relaxation comes from the longitudinal component. In order to conclude that the transverse component of spin fluctuations is suppressed, the knowledge of hyperfine coupling is indispensable. This article is solely devoted to investigate the hyperfine coupling of 133Cs-NMR site to prove that the anisotropic part of hyperfine coupling, which connects the nuclear spin relaxation with the transverse spin fluctuations is considerably large to be A_an=+770 Oe/mu_B.
Rb-NMR study has been performed on the quasi-one dimensional competing spin chain Rb2Cu2Mo3O12 with ferromagnetic and antiferromagnetic exchange interactions on nearest neighboring and next nearest neighboring spins, respectively. The system changes from a gapped ground state at zero field to the gapless state at H_C simeq 2 T, where the existence of magnetic order below 1 K was demonstrated by a broadening of NMR spectrum, associated with a critical divergence of 1/T_1. In higher temperature region, 1/T_1 showed a power-law type temperature dependence, from which the field dependence of Luttinger parameter K was obtained and compared with theoretical calculations based on the spin nematic Tomonaga Luttinger Liquid (TLL) state.
190 - Yogesh Singh , R. W. McCallum , 2007
Static magnetic susceptibility chi, ac susceptibility chi_{ac} and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are reported. A Curie-Wiess fit to the chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below 150 K the chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero field cooled (ZFC) chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this temperature. The frequency dependence of the chi_{ac}(T) data indicate that below 3 K the system is in a spin-glass state. The difference Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy upto 300 K is more than what is expected for S = 1/2 moments. The anomaly in Delta C and the extra entropy suggests that there may be a structural change below 130 K in In2VO5.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا